INVESTIGATION ON COMPLEX VARIABLE BASED
BACKPROPAGATION ALGORITHM AND APPLICATIONS

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by
A. Prashanth

1o the

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

March, 2003

CERTIFICATE

It is certified that the work contained in the thesis “INVESTIGATION ON COMPLEX
VARIBALE BASED BACKPROPAGATION ALGORITHM AND APPLICATIONS”,
by A Prashanth, has been carried out under our supervision and that this work has not

been submitted elsewhere for a degree.

MM&M\,\)-IM' ﬁ‘@mv

Dr.N. S. Vyas Dr. P.K.Kalra —

Professor . Professor

Department of Mechanical Engineering Department of Electrical Engineering
L1T. Kanpur ' [.IT. Kanpur

March, 2003

74 OCT 2004
FAATT FAF EABTH

wreaty stadfy 9 JEaT v
aufa woa. 129338

e

_._____A

Acknowledgement

I wish to record my grateful thanks to both my thesis advisors Dr. N. S. Vyas and Dr. P. K. Kalra
for affording me freedom that my mind always needed. They always let me take my own
direction and never imposed a thing on me. At times when my work went slow or I groped for
too long to take decisions, they had always been there to give me suggestions and pass some
interesting ideas on. I've realized after much experimentation with my own self that the task that
one embarks on should be taken through to the very end clearing all the hurdles en route and
shouldn’t balk when the difficulty encountered appears arduous. After all, the hurdle that
appeared leviathan might turn out trivial on a closer inspection. It’s important that one develop a
faculty to construct ideas and pulverize the hurdles as they crop up, make way thereby and surge
ahead. I’ve come to realize that it’s the successful ventures steered with an ideas based

groundwork that makes an expert in the field.

There are many that I must thank for if it were not for them, I wouldn’t have learnt as much.
Foremost, I must thank Gopal Sharma for all the discussions I had with him over a spectrum of
topics. We discussed Mathematics, Physics, Computer Science. Neural Networks, Astronomy.,
Chess among many others. I gained much from this interaction for it not only helped me improve
my understanding but also upgrade my knowledge as [referred the web or textbooks as the
discussions progressed. I shall always remember the last discussion we had on Huygens’

principle not to mention the altercation the principle led us into.

I thank all my friends in the Mathematics department: Tony, Anjan, Srinivas, Chand, Challa.
Sajid, Srinadh and Lamba. I gained much from the weekly discussions we organized and
religiously followed for over two years. In the process, we covered many topics from Rudin’s
books, Algebraic Geometry and Analysis. Thanks to the many courses I audited in the
Mathematics department, I’ve learnt how to think from a fundamental viewpoint. ['ve
understood as the discussions progressed that a strong foundation in mathematics imparts

enormous force to the argument one puts forth.

I thank Madhav for all the discussions I had with him. Alfhough he was primarily into Fuzzy
Logic and explored Path-Planning in Robotics, we had many topics that we could always cling
on to and discuss for hours. There were instances when the discussion became an altercation but
no hostility ever stood between Madhav and 1. Some important points got clarified during these
analyses. I recall the discussion on majorizing sequence and application of Cauchy-Schwartz
inequality by considering a dummy sequence that prepares the platform for an interesting

situation in a Path-Planning problem.

[also thank Sanat, Ashwani, HK, Animesh, GSK, Puneet, Raman, Sinha, kshitij, Deepak and
Saurabh for making my stay at [ITK memorable. I discussed topics in CAD with GSK, Sanat and
Puneet while Animesh helped me with some fundamentals of Vibration and Dynamics. When |
first began working on Complex-valued Neural Networks, Sidana had always been there to
discuss various problems as they cropped up as we together coded varied algorithms in
MATLAB. Later when Sreeram and Sushil joined us and I interacted with them, my outlook got
widened as I closely followed the variety problems they worked on using MATLAB and JAVA
based programs. I've also closely followed the work Padhy, Rao, Himanshu and Ankur did on
the Fault Simulator running LabVIEW and MATLAB based panels. At one stage, Sunil Pandey
and I embarked on a music related project of collecting signals from various musical instruments

and designing neural networks to differentiate between their timbres.

Out of m}'/ own curiosity, I went ahead exploring some paths that often flashed on my mind, like
FEM models for vibrating air-columns of musical instruments for instance. 1 always loved to
perform Gedanken experiments on computers and network neighborhood. I discovered MAPLE
as I went ahead with my excavations. I found MAPLE a truly wonderful Computer Algebra
System. I explored the commands list of the package and with the aid of a book on how to model

chaos problems using MAPLE, learnt the programming basics of the package.

I thank all my friends who have been with me at all times. [discussed several technical. practical
and computational problems with a group of inmates who have been allotted place upstairs as
there wasn’t enough space for all the new computers in the office ground floor: Dinesh and Vipin

worked tirelessly on a Power Systems Project running MATLAB programs with whom I

discussed MATLAB related problems and there was Jaideep on the Indian Oil Project who
furthered the Sequenced Data Model we proposed to solve a peculiar problem the company in
question posed. I’ve often shared a lunch with Pushpendra and Sunil. Last but not the least, | am

grateful to my parents who have always been with me and supported my ambitions.

[have always been an ardent fan of Sir Isaac Newton. His genius manifested in the Fundamental
Laws of Motion that always inspired me. An ideas based study is the one that would always rise
to the pinnacle and ideas substantiated by hard-work open up promising new avenues as one
works on. This was the realization that accrued on me perhaps that urged me to adopt the
approach in all the other topics I pursued in the last few years. I studied violin to some depth
employing my own ideas and developing them, referring to the web when some puzzling
quéstions crossed my path. I found my ideas based approach effective when I discovered that it
worked well with flute, guitar and saxophone as well. When viewed from the ideas angle, Music
didn’t seem any different from Mathematics. Its ideas perhaps that binds all knowledge into one.
All the interaction I had here added to my growth and intellect for 1 have become a refined and a

better human being.

Contentsi

1. Introduction
1.1 The Neural Network
1.2 Artificial Neural Networks and

Complex valued Neural networks

1.3Updating Complex-valued weights
1.4 A Few Remarks
1.5 ANN versus CNN
1.6 Organization of the Thesis

2. Literature Survey
2.1 Research on ANN
2.2 Complex variable based Neural Networks

3. Investigation of Error Functions

3.1 Why vary Error Function

3.2 Real Error Functions
3.2.1 Absolute Error Function
3.2.2 Andrew Error Function
3.2.3 Bipolar Hyperbolic Squared

Error Function A

3.2.4 Cauchy Error Function
3.2.5 Fair Error Function
3.2.6 Fourth Power Error Function
3.2.7 Geman McClure Error Function
3.2.8 Huber Error Function
3.2.9 Hyperbolic Squared Error Function
3.2.10 Log-Cosh Error Function
3.2.11 Logarithmic Error Function
3.2.12 Mean-Median Error Function
3.2.13 Minkowski Error Function
3.2.14 Quadratic Error Function
3.2.15 Sinh Error Function
3.2.16 Tukey Error Function
3.2.17 Welsch Error Function

3.3 Complex Error Function
3.3.1 Complex Absolute Error Function
3.3.2 Complex Andrew Error Function

~ O O W W

10
14

16
17
17
18

18
18
18
19
19
19
19
20
20
20
20
20
21
21
21

22
22

3.3.3 Complex Bipolar Hyperbolic Squared

Error Function 22
3.3.4 Complex Cauchy Error Function 23
3.3.5 Complex Fair Error Function 23

3.3.6 Complex Fourth Power Error Function 23
3.3.7 Complex Geman McClure Error Function23

3.3.8 Complex Huber Error Function 23
3.3.9 Complex Hyperbolic Squared

Error Function ‘ 24
3.3.10 Complex Log-Cosh Error Function 24
3.3.11 Logarithmic Error Function 24

3.3.12 Complex Mean-Median Error Function 25
3.3.13 Complex Minkowski Error Function 25

3.3.14 Complex Quadratic Error Function 25
3.3.15 Complex Sinh Error Function 25
3.3.16 Complex Tukey Error Function 25
3.3.17 Complex Welsch Error Function 26
3.4 Properties of Error Functions 35
3.5 Benchmark Problems 41
3.5.1 The XOR Problem 42
3.5.2 The N-Parity Problem 43
3.5.3 The Coding-Decoding Problem 53
3.5.4 The Sin(x)Sin(y) Problem 55
3.5.5 The Two-Spirals Problem 70
3.6 Conclusion 76
4. Investigation of Activation Functions 78
4.1 The Complex Activation Function 78
4.2 Study of Complex Activation Functions 82
4.2.1 Liouville Theorem 82
4.2.2 Complex Activation Functions and their
Derivatives 82
4.2.2.1 Nitta Activation and Derivatives
83
4.2.2.2 Haykin Activation Function 84
4.2.2.3 Haykin Activation and

Singularities 86
4.2.2.4 Georgiou Activation 87

4.2.2.5 The New Activation Function89

4.3 Conclusion 91
5. Application to Mapping Problems 94
5.1Mapping Properties of Neural Networks 94
5.2CNN Applied to Mapping Problems 95
5.2.1 Bilinear Transformation 95
5.2.2 The Polynomial Map 101
5.2.3 The Similarity Transformation 116
5.2.4 Complex Exponential Map 122
5.2.5 Exponential Map. 131
5.2.6 Mapping w=sin(z,)sin(z,)
using CNN 136
5.3 Conclusion 141
6. Application to Surface Classification Problem 143
6.1 Introduction 143
6.2 Point Clouds in Practical Application 143
6.3 Training Surfaces 148
6.4 Network Testing 159
6.5 Classification Errors and Surface Signatures 161
6.6 Network Robustness - 166
6.7 Order Determination of Algebraic Surfaces 166
6.8 BPA based on Different Error Functions 169
6.8.1 Classification result 172
6.9 CVBP based on Different Error Functions 172
6.9.1 The Complex variable based Algorithm172
6.10 Some Remarks 174
6.11 Conclusion 175
7 Conclusion and Scope for Future Work 176
7.1Summary 176
7.2Scope for Future Work 177
Bibliography - 181

Appendix 189

List of Figures

Fig 1.1 Structure of the Neuron showing dendrons, axon and the cell body

Fig. 1.2 Comparing the actual response curve with the mathematical function.

Fig. 1.3 Evolution of the CNN

Fig. 3.1 (a) OR Gate showing a linear Decision Boundary (b) XOR Gate with a possible
non-linear Decision Boundary

Fig. 3.2 Error plotted against number of iterations while training a CNN for CoDec
Problem

Fig.3.3 Plots (a) and (b) are respectively, the real and imaginary parts of the complex map
w=sin(z)

Fig. 3.4 (a) shows the input circles and (b) shows the image of the w=sin(z1)sin(z2) map.
All are normalized to within the unit square

Fig. 3.5 The Problems of Two-Spirals requires telling apart the dotted spiral with the one
shown in dots and dashes using a Back-Propagation trained Neural Networks

Fig. 3.6 Error convergence characteristic with the two spirals problem withreal EF based
BPA

Fig. 4.1 Nitta Activation Surfaces

Fig. 4.2 Real Part of Haykin Activation

Fig. 4.3 Singular points of Haykih Function

Fig. 4.4 Real Part of Georgiou Function

Fig. 4.5 Real Part of New Activation Function

Fig. 5.1 Bilinear Transformation maps circles to circles

Fig. 5.2 The polynomials of quadratic and Fourth Power are shown in (a) and (b)
respectively. A comparison clearly reveals that the curves are a way different
with Fourth Power having a slower rise than the Quadratic.

Fig. 5.3 The Similarity Transformation. The outer circle is mapped radially onto the inner
one which is concentric with the outer and half its radius .

Fig. 5.4 The Exponential Map trained with CNN based on Nitta and New Activation
Functions

Fig. 6.1 Points on the xy-Plane where all the surfaces were sampled

Fig. 6.2 Signatures of Training Surfaces

Fig. 6.3 Signatures of surfaces of Test Set 1

Fig. 6.4 Signatures of surfaces of Test Set 2

Fig. 6.5 Signatures of surfaces of Test Set 3

Fig. 6.6 Points for sampling the surfaces for order determination

Fig. 6.7 Planes, Quadratic and Cubic Surfaces for Order Determination

Fig. 6.8 Typical signatures of Planes, Quadratic surfaces and Cubic surfaces for order

determination

List of Tables

Table 3.1 The Error Fu\nctions

Table 3.2 Complex Exclusive-OR Map

Table 3.3 Epochs for CXOR and XOR Problems solved using CNN, ANN

Table 3.4 The result with different CNNs tabulated for the CXOR problem. The
simulated points shown in dots are close to the target points shown in asterisks.

Table 3.5 Complex 3-Parity Problem is Non-Associative

Table 3.6 Complex 3-Parity problem, composition as in eqn. (3.36)

Table 3.7 Complex 3-Parity problem, composition as in eqn. (3.37)

Table 3.8 Norm computation for the Complex 3-Parity Problem

Table 3.9 CoDec Problem using EF based ANN and CNN

Table 3.10 Result showing the number of epochs required for capturing z=sin(x)sin(y). A
target error of 0.0001 was set with a 1-5-1 architecture. Result was averaged
across three runs.

Table 3.11 CNN Mapping the sin(x)sin(y) surface in [0,Pi/2]. CNN outperformed ANN
in this range of the map. Architecture was 1-5-1, Learning rate was 0.1.

Table 3.12 Real EF based ANNs mapping the sin(x)sin(y) surface using a 1-5-1
architecture, in the range [0,2*Pi] where ANN performed be'tter than CNN.

Table 3.13 Approximating sin(z) using Taylor Series. The figures (a)-(f) show the

convergence of the Real Part of sin(z) as the number of terms of the series

increase while figures (g)-(I) show how the imaginary part of the function
approximates.

Table 3.14 Mapping w=sin(z1)sin(z2) using EF based ANN and CNN

Table 3.15 Mapping w = sin(z1)sin(z2) using EF based CNNs. The Learn rate was 0.1.
architecture was 1-5-1.

Table 3.16 The simulation result with real EF based BPA addressing the Two-Spirals
problem is shown in the table. The architecture was 1-5-1. Learning rate was
0.1.

Table 3.17 Comparing the performances of BPA and CVBP for Two-Spirals Problem.
The average epochs for convergence are shown for the BPA while the average
saturation value and the average epochs for saturation are tabulated for the
CVBP. Learning rate was 0.1.

Table 3.18 CXOR with different architectures, using Nitta activation

Table 4.1 Architecture was 1-5-1, Learning Rate was 0.1, Target Error was 0.0001

Table 5.1 1-5-1 architecture, Nitta Activation Function. Learning rate 0.1, 1500 epochs

Table 5.2 1-5-1 architecture, New Activation Function. Learning rate 0.1, 1500 epochs

Table 5.3 Capturing Parabola using Nitta Activation, with a 1-5-1 architecture, learn rate
of 0.1. Epochs were set to 2500.

Table 5.4 Capturing Parabola using New Activation, with a 1-5-1 architecture, learn rate
of 0.1, 2500 epochs

Table 5.5 Capturing Fourth Power using Nitta Activation, with a 1-5-1 architecture, learn
rate of 0.1, 2500 epochs

Table 5.6 Capturing Fourth Power using Nitta Activation, with a 1-10-1 architecture.
learn rate of 0.1, 2500 epochs

Table 5.7 Capturing Fourth Power using New Activation, with a 1-5-1 architecture, learn
rate of 0.1, 2500 epochs

Table 5.8 Capturing Fourth Power using New Activation, with a 1-10-1 architecture.
learn rate of 0.1, 2500 epochs

Table 5.9 Capturing Similarity Transformation using Nltta Activation, with a 1-5-1

architecture, learn rate of 0.1, 1500 epochs

Table 5.10 Capturing Similarity Transformation using New Activation., with a 1-5-1
architecture, learn rate of 0.1, 1500 epochs

Table 5.11 w=exp(z) with 1-5-1 architecture, Nitta Activation, 4000 epochs, Learning
rate = 0.1

Table 5.12 w=exp(z) with 1-10-1 architecture, Nitta Activation, 4000 epochs, Learning
rate = 0.1,

Table 5.13 w=exp (z) with 1-10-1 architecture, New Activation, 4000 epochs, Learning
rate = 0.1

Table 5.14 w=exp(z) with 1-5-1 architecture, New Activation, 4000 epochs, Learning
rate = 0.1.

Table 5.15 y=exp(x) captured by 1-5-1 Nitta activation based CNNs. Learning rate was
0.1, 2500 epochs

Table 5.16 y = exp(x) captured by 1-5-1, New activation based CNNs

Table 5.17 w=sin(z;)sin(z;) captured by 1-5-1. Nitta activation based CNNs. 1500
epochs.

Table 5.18 w=sin(z)sin(z;) captured by 1-5-1. New activation based CNNs. 1500
epochs.

Table 5.19 Errors with test data averaged across three runs. CExp is Complex
Exponential Map, Exp is the Exponential Map, BTrans is Bilinear
Transformation, Polynomial and sin(z1)sin(z2) maps in that order.

Table 6.1: List of Transcendental Surfaces in Practice

Table 6.2 Algebraic and Transcendental Surfaces

Table 6.3 Test Surfaces for the Surface Classification

Table 6.4(a) Test performance of thel00-5-1 network on each test set ('1' indicates
correct identification, '0' indicates incorrect identification)

Table 6.4(b) Performance of various Back-Propagation Algorithms with test surfaces of
Set 1.

Table 6.5 Testing the Robustness of the Neural Network

Table 6.6 Classification based on Error Function based BPA

Table 6.7 Test performance of complex network on each test set. al is 100-5-1 a2 is 100-
10-1, a3 is 100-15-1, a4 is 100-20-1.('1" indicates correct identification. '0'
indicates incorrect identification)

Table 6.8 Classification based on Error Function based CVBP (Nitta activation)

Table 6.9 Classification based on Error Function based CVBP (New activation)

List of Abbreviations

BPA: Back Propagation Algorithm

CNN: Complex-valued Neural Network

CVBP: Complex-Variable based Back Propagation algorithm
EF: Error Function

TrS1: Training Surface numbered one

Tst2: Test Surface numbered two

ABSTRACT

Complex-valued Neural Networks have been studied in the thesis from the viewpoint of
Error Functions (EF). Practical data are prone to outliers that offset an optimization
scheme by contributing greater cost to the standard Quadratic EF. Statistics literature
pointed out other EFs that can effectively circumvent this problem and afford a better
solution thereby. Seventeen such EFs have been gathered from different sources and
Back-Propagation algorithm developed over them. The functions have been generalized
to complex variables and Complex-valued Back-Propagation Algorithm (CVBP)
developed over them. To validate the EF based networks, the following Benchmark
Problems have been employed: Exclusive-OR, n-Parity, Coding-Decoding, Mapping
z=sin(x)sin(y) and Two-Spirals Problem. Each has been generalized to the complex-
variables accordingly and the EF based CVBP have been used to solve them. An error
criterion has been used to train the networks. The EF based algorithms have then been
used to map the following standard problems: bilinear transformation, polynomials and
real and complex-valued exponential function. To study the networks™ ability to classify.
they have been applied to a surface classification problem requiring sorting of algebraic
and transcendental surfaces into different classes, that are later tested with three sets of’
test surfaces each with varying degrees of departure from the training set to quantify the

performance of the trained networks.

SYNOPSIS

The thesis investigates the properties of Complex-variable based Neural Networks
(CNN). CNN is a generalization of the Artificial Neural Network (ANN) to the complex
domain where weights, biases and activation functions are complex numbers and
functions. A recent investigation (Nitta, 1997) reports that the size of the CNN could be
smaller than that of an ANN for the same problem (as each complex variable can take
two real variables. Also the weights are complex which implies that they hold twice the
information as real weights would). Literature review in the area revealed that many
questions about the architecture of the CNN and activation functions employed (Leung
and Haykin, 1991) have remained open as investigators have either not addressed them or
have given partial information on these points of interest. It was discovered during the
course of research that some reported results contradicted each other. For instance, Leung

and Haykin (1991) claimed that the Complex Activation Function (CAF) given by the
formula, 1/(1+e77), (wWhere z is the net input to the complex Neuron), converged in their

experiment while Nitta (1997) reported that the same CAF never converged in his
experiments. Leung and Haykin (1991) also state that the singular points of the CAF
could be circumvented by scaling the inputs to a region on the complex-plane but no
procedure to implement this was described. The above facts clearly indicate the need for
comprehensive investigation to establish the properties of the CNN. _

Complex Activation Functions (CAF) and their characteristics depart from the traditional
activation functions of the ANN. Firstly, these functions have real and imaginary parts
each of which individually are functions of two variables that make them surfaces in
three-dimensional space. Secondly, there exist additional constraints imposed by the
complex plane in the form of Liouville Theorem (Ahlfors, 1979) that restrict the choice
of functions that could be used as the CAF. As a result, tailoring new CAF by sewing
pieces of surfaces along the common boundary would not be an acceptable proposition as
the analyticity of the function developed this way should be established at each point on
the boundary and later the construct must be veritied to have cleared the constraint
imposed by the Liouville Theorem. This restriction is unlike real value activation

functions that could be easily tailored by joining differentiable functions and establishing

differentiability at finitely many points (where each piece joins up with the next). During
the course of this study various CAFs reported by researchers have been investigated in
the above context. A new CAF is also proposed. The number of inputs is dropped by as
much as half in a CNN so also the sizes of the hidden layers. But the mechanism by
which the phase (equivalently the imaginary part of the complex weights) compensates
for the drop in the number of inputs is not addressed in the available literature. The thesis
attempts to address the issue of size reduction by means of some computational
experiments.

In almost all investigations and applications involving ANNs, the Back-Propagation
Algorithm (BPA) applied is the one developed over a Quadratic Error Function. This
Error Function (EF) may not perform satisfactorily for real life data with function
approximation and classification. Literature points out many other functions that can take
the place of the traditional Quadratic Function in data analysis but these EF based
applications }have been studied from a Statistics viewpoint and not from a Neural
Network viewpoint. Incidentally, Rey (1983) pointed out that in Statistical Analysis
replacing EF can yield better results. It must be stressed here that the EF over which the
complex-variable based Back-Propagation Algorithm (CVBP) was built recently also is
the Quadratic Function. However, a few researchers (Werbos and Titus (1978), Gill and
Wright (1981), Fernandez (1991), Ooyen and Nienhaus (1992)) have used different EF
with their BPA. While sufficient information exists about the EFs in literature, complex
EFs have not been investigated in a systematic fashion. Different experiments have been
carried out over proposed EFs in the complex domain. Replacing the EF assumes
importance because practical data are prone to measurement errors and outliers. If the:
Quadratic EF were retained for analyzing data prone to outliers and other errors, the
curve of best-fit would not be appropriate because the cost that accrues to the chosen EF
would get enhanced due to the power term for far-off points (outliers). Instead, if the
Quadratic EF were replaced with an Absolute Function for example. the curve-fitting
scheme for noise and error-prone data would be more evenly placed because the cost
accrued due to the these data would be of the same order as the actual data points. This
even-weighting results in a better curve-fit than the one obtained by Quadratic Error

based approximation.

The approach to the investigétion went along the following lines. The two important
parameters that exist in the problem are: EF based CVBP and an associated CAF. For
each problem tried, each of the seventeen EFs was combined with each of the CAFs by
selecting the EF first and running the training by choosing the CAFs one after the other.
Hence, the Nitta, Georgiou functions and New Activation function have been emploved
with each EF during the investigation.

Of the various parameters set to run the CNN, the CAF is most critical. In the complex
domain, analyticity of the CAF must be verified before it can be used as an activation
function to the CNN. This aspect is unlike ANN where no such constraint existed. The
CAFs available from literature have been collected and analyzed. The functions are:
Haykin Activation, Nitta Activation Georgiou Activation (Georgiou and Koutsougeras.
1992) that were comparatively studied. The newly proposed CAF satisfies all the
constraints imposed by the theory of complex-variables. The singular points of the
Haykin activation function which occur at the points (0,(2n+1)7), (n an integer) were
found to be responsible for disrupting the downstream convergence whenever at least one
of the net inputs to neurons fell in their vicinity in the course of training.

Activation functions were studied on a comparative basis. The set of benchmarks used for
comparative study of EF based algorithms are (Dagli, 1994): Two-Spirals Problem, Co-
Dec Problem, Parity Problem, mapping the surface z = sin(x)sin(y), Exclusive-OR
Problem (XOR). These benchmarks were generalized to the complex domain and the
CVBP based CNN was used to address them.

The Two-Spirals problem did not converge for all the EF based CVBPs. The non-
linearity of thel problem was preserved while generalizing, the outputs were chosen to be
complex numbers for the two spirals. The extended version of the XOR problem. the
complex XOR (CXOR, Nitta (1997)), was used to develop complex 3-Parity map. Owing
to the non-commutative nature of the CXOR map, the complex 3-Parity turns out non-

associative. Hence the two ways of evaluating the inputs for the complex 3-Parity
mapping are (¢, o¢,)oc, and ¢ o(c, o¢;) where ¢,.c,.c, are the three inputs complex
numbers. Higher dimensional complex Parity problems require evaluation of the inputs in

several ways owing to the non-commutative CXOR map. It was observed that the CNN's

were sensitive to the order of evaluation of inputs (hence to the non-associativity of the

map). A mechanism was proposed to explain this observation: the intermediate complex
numbers (the bracketed ones in the three complex number composition) determine how
the output would be and hence although it (the intermediate complex number) is close to

the third argument (in the s-ense of the EF) the final output need not be. This happens
more often with the second way of composing (¢, (¢, °c;)). The complex version of the

Co-Dec was developed by assigning (1+/) to the diagonal entries (instead of the usual
unity along the diagonal). The surface map w =sin(z,)sin(z,) was considered as this
generalizes the z = sin(x)sin(y) map to complex variables (Dagli, 1994). The mapping
studied was the one obtained by setting z, and z, to curves on the respective planes and
capturing the output curve on the w-plane. It turns out that the generalization is a plane-
to-plane mapping unlike the real variable case where it was a surface in three dimensions.
Different EFs used in literature were collected and BPA were developed over each of
them. Explicitly the EFs are (Rey, 1983) — Absolute EF, Andrew EF, Bipolar Hyperbolic
EF, Cauchy EF, Fair EF, Fourth Order EF, Geman-McClure EF, Huber EF, Hyperbolic
Squared EF, Logarithmic EF, LogCosh EF, Mean-Median EF. Minkowski EF, Quadratic
EF, Sinh EF, Tukey EF, Welsch EF. These functions were later generalized to the
complex-variables by retaining the form in each case but extended to accommodate
complex errors. The CVBP were coﬁstructed with these extended EFs. All these EF
based algorithms have been applied to the following Benchmark problems listed above
(Dagli, 1994) and studied comparatively. The generalized versions of the benchmarks
have been used with the CVBP and the CAF. The Nitta Activation was employed for the
training scheme with the CNN.

The CNN were next studied for their ability to map functions. The following maps were
considered for the experiment: the polynomials, the Bilinear Transformation, Similarity
Transformation, the Exponential Map (real and complex). The study was conducted with
all the EF based CVBP. The New Activation Function was used to capture these and its
performance is compared with that of the Nitta activation. The results indicate that the EF
based CNN learns to capture these maps.

To study the CNN’s ability to classify, twenty-five surfaces were considered (twelve
algebraic and thirteen transcendental) to include rotational symmetry, planar symmeltry

and a data set was developed using their point clouds (sampled at hundred points on the

xy — plane). This problem of classification was solved by applying the EF based BPA and
also EF based CNN. To test the network designs, three sets of test surfaces were
constructed. In the first set, the test surfaces were the training surfaces with a mild
variation in the parameters. In the second set the parameter variation is considerably large
while the third set has new surfaces included. The results obtained were later compared.
While modeling the problem, due weight was given to the geometric interpretation and
hence the hundred by one input vector was not tailored into a fifty-by-one complex vector
(as a result, the imaginary part of the inputs had to be assigned zero). The output however
was chosen to be unity for algebraic surfaces and i for the transcendental surfaces. The
weights and activation functions however were complex numbers (with non-trivial
imaginary part) and functions.

In surface mapping problems, the CNN outperformed the ANN when the norms of the
input vector were small while the ANN performed better for larger norms of the input
vectors. All the Error Function based CNN’s learned to map Polynomials, Bilinear
Transformation, Exponential mapping (real and complex) to a relatively better degree of
accuracy. The New Activation function proposed in the thesis outperformed the Nitta
Activation function proposed in literature.

In short, with the Benchmark problems using CNN, the Nitta Activation was found to be
the best across different architectures. The New Activation and Georgiou Activation were
found to perform equally well but were inferior to the performance of Nitta Activation.
The Haykin Activation showed poorest performance (owing to the existence of singular
points). In Error Function study employing ANN and CNN, Cauchy Error Function, Log-
Cosh Error Function, Absolute Error Function, Huber Error Function, Mean-Median
Error Function have either equaled the Quadratic Error Function or have performed better
in the Surface Classification problem (across three runs of training) employing Nitta
Activation Function. In Error Function study with CNN addressing function mapping
problems, Sinh Error Function, Tukey Error Function. Fair Error Function, Mean-Median
Error Function performed on par with Quadratic function or have shown better
performance (across three runs of training) using Nitta Activation and New Activation
Function.

The main contributions of the thesis are

It proposes an EF based approach to Neural Networks (both ANN and CNN); that
the EF can be varied to advantage in practical applications that employ Neural
Networks 1s established.

The CVBP and the CAF are surveyed, studied and compared while a new C Al; is
proposed.

The mapping properties and a classification problem were studied and the EF
based networks were graded according to their performance.

The properties of the CNN were investigated to determine appropriate CAF and

EF for given set of problems relating to Classification and Function Mapping.

Chapter 1

Introduction

1.1 The Neural Network

The basic structure of the ANN evolved in due course from the basic study of the
Neurons in the Brain. The anatomy of the human brain shows three prominent lobes — the
big brain or the cerebrum, the middle brain or cerebellum and the hindbrain or medulla
oblongata. The medulla synapses with the nerves that extend into the spinal column and
divide and sub-divide as they spread out into the various parts of the body. The nerve-
endings are fibrous and end in the sense organs. The set of nerves that carry impulses to
the brain from the sense organs are called sensory nerves while the ones that take the
signal from the brain to the muscles are called mortar nerves. The nerve endings receive
impulses and through the network of nerves pass them to the brain for interpretation.
Studies revealed that different parts of the brain are responsible for various faculties. The
cerebellum coordinates the limb movements; the cerebrum integrates information from
all sense organs, controls emotions and holds memory and thought processes. The
hypothalamus and pituitary gland control visceral functions. body temperature and

behavioral resnonses.

Nucleus
Dendron

Axon .,
Cell Body

Dendlrite

Fig 1.1 Structure of the Neuron showing dendrons, axon and the cell body

The brain is made up of a hundred billion cell, ten billion of which are ‘Neurons® that are
responsible for the different functions of the brain (Fig. 1.1). A typical Neuron has the
central cell or the cell body, the axon, the dendrons that give rise to dendrites. The fibrous
dendrites synapse with the cell body and axon of the neighboring Neurons. Typically
each Neuron has ten thousand neurons in its vicinity to which it connects. The conduction
of electrical impulse through the structure just described is the mechanism that results in
the interpretation of the signal. Neurons respond to the input signal impinged onto them
in a certain fashion that is referred to as the characteristic of the Neuron. A typical

characteristic resembles the sigmoid (Fig. 1.2).

Much research went into how the Neurons operate in the unit, how they respond to an
input impulse. A typical signal to the Neuron would be of the order of forty milli-volts.
and the response of the Neuron depends on the threshold voltage it operates with. That is.
the Neuron responds or ‘fires’ if the input voltage is greater than its threshold and doesn’t
otherwise. Research revealed that the Neurons respond according to their characteristic
function, also called ‘activation function’ which is a general term to describe how a
Neuron responds to a stimulus. Threshold function clearly is one kind of activation

function.

1.2 Artificial Neural Networks and Complex Variable based Neural Networks

An Artificial Neural Network (ANN) is a model that mimics the real Neuron described.
In the model description of the Neuron, the activation function is described by the
sigmoid function that closely resembles the activation of the real Neuron (Fig. 1.2). The
Artificial Neurons are shown connected with links going from one layer to the one
immediately succeeding it and not to the layers that lie beyond the immediate successor
(some applications of Neural Networks, however, have synapses that link the neurons of
the present layer with the ones not only of the immediately succeeding layer but also to
the neurons that lie further.up in the line (Lang and Witbrock, 1988). The update rules for
the new synaptic links have to be derived separately). Every such connection has strength
associated with it quantified by a real number celled ‘weight.” A steep-ness factor was
introduced to adjust the shape of the activation function and tailor it to a form that closely

resembles the actual characteristic. The voltage level at the synapses in the brain is the

synaptic strength to which the real number called weight is associated. In the human

brain the weight is actually the potential that controls the flow of electric impulses
through the link.

08 | o
o8 / I ,/

07 / ..l]
06 / < .zt i J
05 : 1 ! .

03 J
02 | ' J

01 J - /]

Fig. 1.2 Comparing the actual response curve with the mathematical function (a) The actual
characteristic at the output to the neuron in the brain. (b) The sigmoid function
approximates the characteristic.

~ Neural Network algorithms are applied widely today. Uur understanding ot the Networks
improved over the years with the much light research in the direction threw, with the
lasting contributions of McCulloch and Pitts (1943). Donald Hebb (1949), Minsky
(1954), Rosenblatt (1958), Jon von Neumann (1958). Minsky and Papert (1969), Werbos
(1974), Fukushima and Miyaka (1980), John Hopfield (1982), Nitta (1997) to name a
few. Among the most recent developments in the area are the Complex variable based
Neural Networks (CNN) that represent a second generation of architectures that scored
over the standard Real variable based networks (ANN) in certain aspects (Nitta, 1997).
The CNN is new because it operates in the complex variables setting and so the
conventional Back-Propagation Algorithm (BPA) that trains the ANN is not designed to
train the CNN. An extension of the BPA to the complex variables was reported by Leung
and Haykin (1991), called the Complex Back-Propagation Algorithm (CVBP). A study of
how the CNN’s perform in comparison with ANN’s would be interesting, that would be

the theme of the rest of this report.

The following issues need attention from the viewpoint of the new algorithm. There exist
additional constraints (Liouville Theorem) in a complex variable setup than there are in

the real. It is hence not clear how the new algorithm would perform working with the

constraint when applied to various problems. The update rule is exactly same as the one
employed while running the BPA to train an ANN (eqn. (1.1)), it must be noted that the
complex number comes with the phase information embedded into it. This amounts to
saying that the information that would have separately been input to the ANN while
training (as is usually done while training ANNs) gets coupled resulting in a decrease of
the number of inputs by as much as half (as two real numbers make one complex
number) at the same time preserve the information in the form of phase. It is hence not
clear how phase can effectively compensate for the decrease in the number of input
parameters and yet solve the problem at hand - function mapping or classification. In
most problems of practical interest that involve an optimization process, a Quadratic
Error Function is chosen and subject to an optimization (in Neural Networks, the weights
of the network are updated so the derivative of the Quadratic Error Function is as small as
desired, eqn. (1.1)). The BPA as it is employed today, also uses a Quadratic Error
Function. It was pointed out in literature (Werbos and Titus (1978), Gill and Wright
(1981), Fernandez (1991)) that implementing the BPA employing a different Error
Function can improve the performance of the Neural Network. The BPA minimizes a
Quadratic Error Function by steering the weights along the direction of negative gradient
(using the update rule). Its apparent that a Quadratic Error Function is used in the process
even as the literature points out alternative functions that can effectively improve the
performance of an optimization scheme. In fact in the m-Estimators approach to data
analysis (Rey, 1983), a number of functions that can effectively serve as Error Functions
have been listed. It was shown that the new Error Functions have the ability to suppress
the ill-effects due to outliers and exhibit a robust perfofmance to noise and outperform
the standard Quadratic functions when applied to optimization problems involving data
with a scatter of outliers (the fact was demonstrated using an Absolute Error Function to
compute the cost instead of a Quadratic Error Function). Hence the question of how the
BPA would perform when the Error Function is varied immediately comes up. The work
presented in the thesis is an attempt to address these points. These points are addressed by
applying the CNN to problems of varied sorts. The CNN’s are just beginning to be
understood as only a few investigators have reported work in this area (elucidated in

Chapter 2).

Most practical problems that come from various fields (Medicine. Industry. Military.
Aviation and so on) that involve modeling with Neural Networks employing BPA (or
CVBP) can be modelled as Classification Problems or Function Approximation
Problems. Hence to ascertain the performance of the CNN, they must at least be applied
to problems of these two types. Therefore the issues raised were addressed by applying
CNN to problems of Function approximation, Function mapping and Surface
Classification. The application of complex variable based Neural Networks however

becomes clear once they are applied to some standard problems.

It must be noted that a given data can be tailored in different ways to suit for input to the
CNN. For instance, if in a certain problem there exist # inputs and m outputs; a variety of
combinations naturally come up while grouping the m inputs into m; complex numbers
and similarly » outputs also into »; complex numbers to construct the data patterns to
design a CNN (while making sure the dimensions match while grouping the input 7
variables into complex numbers). This is an additional feature of the CNN that a proper
grouping can hasten up the training process and enhance the performance result (this was
observed in a sequence of CNN designs for approximating the sine curve. It was
observed in the experiment that the CNN which had input real but output purely
imaginary took longer to train with a learning rate of 0.1 and an architecture 1-5-1 than
did the network with same architecture and learning rate and weights initialized
identically but the output set to be purely real). As complex numbers are dimension two
with respect to the set of real numbers (Halmos, 1974), variety of CNN designs for a
particular problem become available depending on the grouping and the architecture
chosen. Needless to say that the interpretation of the simulated result should be done in
the way in which the training data was modeled which means if the output was chosen to
be purely complex while training, the imaginary part of the simulated data should be
considered for interpreting the results.

1.3 Updating Complex-valued weights

As was pointed out in the previous section the CNNs operate in the complex domain.
Hence, to understand the various mechanisms from the viewpoint of CNN, it becomes

imperative that we study the basic formulation of the same by taking the properties of

complex variables into account. The weight update rule for the CNN is exactly same as

the one used to training networks using the BPA

OF

w,(n+1)= w, (n)+ n@w =

(1.1)

where, w, are the weights that get updated as the algorithm runs, £ is the Error Function

that gets minimized in the process of weight update and 7 is the learning rate. The
difference of course lies in the fact that the weights are complex numbers while the
learning constant is a small positive real number. The functions of activation that the
Neurons fire according to are all cornple_x in nature. It is hence obvious that a study of
complex variables and complex mappings is essential to comprehend the mechanism by
which a CNN works. A list of basic definitions required for a systematic study has been
given in Ahlfors (1979).

1.4 A Few Remarks

The complex plane is unlike Real line for it is dimension two with respect to real
numbers and one dimensional with respect to the set of complex numbers (Halmos.
1974). A point on the plane can be viewed as a complex number with the x and »
coordinates regarded as the real and imaginary parts of the number. The set of complex
numbers is a Field and hence a perfect platform of operation but is devoid of order. The
properties of the complex plane are different from those of the real line. The complex
numbers have a magnitude associated with them and a phase that locates the complex
number uniquely on the plane. It is hence clear that the complex CVBP that trains the
CNN must not only obtain a convergence with respect to the magnitude but also with
respect to the phase. This is equivalent to stating that the real as well as imaginary parts

of the complex numbers must be separately captured by the CVBP.

1.5 ANN versus CNN
A brief survey into the history of the development of ANN points to the fact that the first

idea of developing the architecture in a way as to mimic the neuronal arrangement in the

/

brain came from a study of the brain anatomy and analysis of the micro-structure of it (as
pointed out in section 1.1). The characteristic that the typical neuron displayed when
impinged with an input force (voltage) resembled the well-known sigmoid function that
in a study down the line became accepted as the function of activation of the Neuron. The
ANN from the incipient stages grew as more facts about the human brain surfaced with
developments in Brain Research (Rose and Bynum, 1982). The results of this research
that could be improvised, adapted and embedded into the ANN got accrued with time and
enhanced its performance, brought some limitations to light (Kolmogorov, 1957; Werbos.
1974; Wang, 1992). On the other hand, heresy to the development of the ANN, the CNN
came about as an extension of the ANN and not as a prototype of the neuronal
arrangement in the brain (for the synaptic strengths in the brain are not complex valued
but are voltages that could be represented by real numbers). The activation function too
was an extension of what existed as the function of activation in the ANN but needed an
improvisation to suit to the complex variable based ambience (and hence don’t resemble
the actual activation function of the brain’s neurons). In the process, new constraints
surfaced (in the form of Liouville Theorem) that had to be cleared for which a different
search had to be carried out. In essence, the CNN is an extension of the ANN but doesn’t
draw anymore from the actual neurons and their arrangement in the brain. Fig. 1.3

portrays a diagrammatic representation of the view presented.

1.6 Organization of the Thesis

The objective of the present thesis is to study the CVBP from the viewpoint of Error
Functions and compare the performance of these with different BPAs developed over

Error Functions. A set of benchmark problems has been chosen for the study.

Literature Survey is presented in Chapter 2. The various Error Functions have been
studied in Chapter 3. The BPAs were developed over these functions and applied to the
benchmark problems. The Error Functions were extendeci to the Complex Variables
setting and CVBP were developed over them and applied to the same benchmark
problems to which the BPAs were applied and a comparison was drawn. The Complex

Activation Functions (CAF) have been analyzed in Chapter 4. The functions put forth in

8

literature have been surveyed and comparative merits and demerits have been pointed
out. The study also addressed the ramifications of the Liouville Theorem. The
Benchmarks studied in Chapter 3 have been used with yet another CAF based CNN. A
new CAF has been put forth and studied. It is shown that the new CAF performs on par
with the existing ones. It is concluded that the singularities of the CAF are critical for the
performance of the CVBP and the CNN. The benchmark probléms earlier chosen have

been addressed from a CAF viewpoint and results compared.

Chapter 5 deals with the Mapping Properties of the CNN. Some maps that were pointed
out in literature (Nitta, 1997) have been studied from an Error Function viewpoint.
Various other maps practically employed in various fields like Fluid Dynamics.

Electromagnetic Theory, Stress Analysis, Aerofoil Design have been trained using the
CNN.

A classification problem, one of identifying surfaces as Algebraic or Transcendental is
considered in Chapter 6. The problem naturally arises in Reverse Engineering where the
idea is to reconstruct the equation of the surface from a point cloud. All the available
literature in the area describes procedures to approximate the cloud of points using
polynomials while in the process, the actual form of the surface remains unknown. Hence
the problem of identifying the kind of surface from which the point cloud was generated
is a basic problem that the research in Reverse Engineering always overlooked. In
problems where the constraint is extremely important (the tonal quality of the vibrating
air column of a trumpet for instance), approximating the instrument’s surface by a
polynomial might offset the location of the nodes and anti-nodes of the air-column
resulting in a poor sound quality (Askill. 1979). The Algebraic-Transcendental
classification studied in Chapter 6 finds application to such problems where the
approximating with algebraic polynomials may not yield accurate results. The problem is

addressed in this thesis using the Error Functions based BPAs and the CVBPs.

Chapter 7 concludes the thesis giving a summary of the main contributions and presents

directions for further research in the area.

Nucleus

. Dendron
Axon
~ Cell Body
" Dendrites
e
IS
“ =
N\ g
Real

Activatian

Aetvation

Camplex
Activatan

Complev (w,)

o Fig. 1.3 The figure shows

pu how the CNN evolved.

s (a) The neurons in the Brain
(b) The ANN was developed
by studying the neurons while

i (c) the CNN came into being

Complex as an extension of the ANN.

Aetivation

IN
PuU
™

(c)

Chapter 2

Literature Survey

R

2.1 Research on ANN

The first mathematical result about the convergence of composition of functions was
given by Kolmogorov (1957) who stated that any continuous real valued functions in # -
variables defined on [0,1]" (n>2) can be represented in the form of composition of

function as shown

2n+l n

S %5, Xs00%,) = D g [0,(x,)] 2.1)
JE—

When the result was announced, it wasn’t clear how it might be applied and that left the
investigators of the time puzzled. Many results followed the discovery of the ANN that
stated how and why the Neural Network algorithms would converge. For instance, there
were results on how to select activation functions t;J ensure the Neural Network scheme
converged (Hassoun, 1995). Some effort describing how to select an architecture to
ensure convergence (Mirchandani and Cao, 1989) was also reported. It should be
however pointed out that most results in the area of Neural Networks are existential in
nature; for instance, to state convergence obtained by an algorithm the theoretical results
assure the existence of weights (Rudin, 1976) that can approximate the data with
functions of the specific form but how the weights can be obtained is not explicitly

mentioned.

The first successful attempt to develop the ANN architecture was made by McCulloch
and Pitts (1943), hence from the incipient stages since 1943 with the discovery of the
perceptron the theory of Neural Networks reached a stage where all algorithms developed
here find application to every field studied today. The first successful model of Neuron

didn’t appear until the ADALINE (Adaptive LINEar combiner) entered the scene in the

1960°s and the Widrow-Hoff learning rule that trained the ADALINE based networks.
The ADALINE or the Adaptive Linear Network is the basic elemént of the Neural
Network that adds the inputs incident onto it. The MADALINES or Many ADALINES
performed the linear combination with many ADALINES; the Widrow—Hoff rule
minimized a sum-squared error in a pattern classification problem as it trained the
MADALINES based Neural Network. Computational power available at the time was
insufficient to support the load due to training algorithms and as a whole the research in
the area slowed down drastically due to the impediment. Nilsson (1965) put forth the idea
of multi-layered networks but the concept didn’t receive much attention as the research
went slow at the time. Minsky and Papert (1969) published a book that further put Neural
Networks in jeopardy as it questioned the potential of Neural Networks as computational
tools and exposed the limitations of the perceptron. Research almost stopped since the
publication of the work of Minsky and Papert and not much research happened for about
twenty years between 1965 and 1984. But the few who pursued Neural Networks during
the period made lasting contributions: mathematical theory of Neural Networks was
developed by Sun-Ichi Amari (1972, 1977), Fukushima (1980) developed the

Neocognitron, Associative Memory was developed by Tuevo Kohonen (1977, 1980).

In fact it was much after Kolmogorov published the first theoretical result that a
consistent method (that worked universally) to obtain the weights was worked out by
Werbos (1974), employing the idea of gradient descent. Although Werbos™ discovery of
the BPA was an important milestone in the history of Neural Networks, the method isn’t
fully free from bottlenecks. The problem of local minima while training using the BPA
needs a special mention. Depending on the initial condition the network was set to, BPA
might steer the Neural Network into a local minimum at which the training process gets
stuck (the weights do not get updated but stay frozen even as the epochs run). To
circumvent the problem, some algorithms for minimization without the use of derivatives
have also been reported (Brent, 1973). These involve the ideas of random search
techniques. In addition to this, methods to prune synaptic links that are least sensitive to
the training process have been recently proposed (Karnin, 1990). The redundant synaptic

links are severed from the network in this appraoch. This process improves network

generalization by decreasing the number of weights, results in a reduced network
complexity, and decreases the needed computation. As applied to Differential Equations
the networks have been used to study chaos in dynamical systems (Aihara er. al. (1990)).
Complex chaotic neural networks were studied by Hirose (1992). Differential Equations
were modeled using Neural Networks and solutions of equations were studied by
inputting chaotic initial conditions to the network. Along the same line but for small
architecture Neural Networks with delay, Francois and Chauvet (1992) reported
dynamics of Neural Networks classifying the regimes as stable, unstable or oscillatory.

The chaotic Neural Networks have also been applied to information processing (Ishi er.
al., 1996).

Fletcher and Reeves (1964) reported a version of the Conjugate Gradient Algorithm.
Beale (1972) developed the idea of conjugate gradient further by computing the gradient
using a different formula. Battiti (1992) reborted an efficient method to compute the
conjugate gradient. Charalambous (1992) furthered the step by developing a Conjugate
Gradient based BPA incorporating efficient methods discovered. The scaled conjugate
gradient algorithm was put forth by Moller (1993) in which a scaling based on the
position in the weights space was used in conjunction with a conjugate direction based
update of weights. A highly efficient way of training using gradient descent, embedding
the good features of the second order algorithms (that involve computing the Hessian) by
using an approximation to the Hessian and bypassing the actual computation of it is the
Lavenberg-Marquardt Algorithm put forth by Hagan and Menhaj (1994). The Neural
Network is initialized with a set of weights and the performance of the final Network
depends on these initial weights. The effect of adding noise during BPA training and the
final network’s performance were studied by An (1995) while the generalization
performance based on the weight initialization was studied by Amir es. al. (1997). In the
same year, Dai and MacBeth reported their observations on learning parameters and how
they influence a BPA based training. The size of the architecture that optimally suits a
problem remains an open problem in Neural Networks to this day. Huang and Babri
(1998) reported a result that yielded an upper bound to the number of hidden neurons for

Neural Networks with arbitrary non-linear activation functions. Guarneri and Piazza

(1999) reported an adaptive spline-type activat-ion function for standard Neural Network
based training. Among the new types of architectures proposed are the Cascade
Correlation Networks by Fahlman and Lebiere (1990) and the SOPNN (Sum Of Product
Neural Networks) by Chun ef. al (2000) that found application to multi-variable
functions. The Neural Network in this application determined if there were obstacles on
the road based on a processed vector that was the resultant of the sensor data and an

image processing algorithm.

Rey (1983) pointed out that by varying the Error Function in an optimization scheme. the
result could be improved substantially. The statement was backed by demonstrating (Rey.
1983) that an Absolute Error Function based optimization solved a curve-fitting problem
more efficiently than the standard Quadratic Error Function based optimization. Earlier
Werbos and Titus (1978), Gill and Wright (1981) also discussed the idea of changing the
Error Function in an optimization scheme. Fernandez (1991) implemented some new
Error Functions that were designed to counter the ill-effects local minima by weighting
the errors according to their magnitudes. Matsuoka (1991) reported BPA based on
logarithmic Error Function and elimination of local minima. Ooyen and Nienhaus (1992)
used an entropy type Error Function and showed that it performs better than the
Quadratic Error Function based BPA for function approximation problems. Among the
various other applications are the control problems from the aerospace industry where
Neural Network algorithms have been used to determine satellite orbit motion (Sinha er.
al., 2000, 2000a) employing a Compensatory Neuron model, proposed in the paper. This
novel model incorporates a product term inside the neuron (in addition to the usual
weighted sum of signals from the previous layers) as a compensation scheme and obtains
“an accelerated convergence. Motion planning problems encountered in robotics to which
neuro-fuzzy models of solution have been proposed (Krishna and Kalra, 2000). The
Neural Networks used in the application determined an appropriate set of parameters for
the membership functions that supported a rule-base for a fuzzy logic model that
implemented the control. The automobile industry developed an ALVINN (Autonomous
Land Vehicle In Neural Networks; Jochem et. al., 1995) thai steered a land motor vehicle

without a driver. Image-Processing techniques were coupled with Neural Network

algorithms to detect and circumvent obstacles as the land vehicle navigated the set path

with obstacles introduced purposely to test the effectiveness of the Neural Network

scheme.

2.2 Complex Variable based Neural Networks

The research in the area took a different turn in the early 1990°s with the publication of
Complex Back-Propagation Algorithm (CVBP). A first attempt to generalize logic gates
to complex-valued functions was made by Aizenberg et. al. (1971). The complex version
of the BPA, however, made its first appearance when Widrow, McCool and Ball (1975)
announced their Complex Least Mean Squares (LMS) algorithm. Kim and Guest (1990)
published a complex valued learning algorithm for Signal Processing applications. The
necessity came in the form of capturing the phase information in Signal Processing
applications where complex numbers naturally enter the study and must be retained all
through the problem as they should be later interpreted. Lueng and Haykin (1991)
published the CVBP in which the activation used was an extended version of the sigmoid
function. Georgiou and Koutsougeras (1992) published another version of the CVBP
incorporating a different activation function. The dynamics of complex valued networks
was studied by Hirose (1992) which was later applied to the problem of reconstructing
vectors lying on the unit circle. Benvenuoto and Piazza (1992) developed a variant of the
CVBP by choosing a different activation function. A complex-valued Recurrent Neural
Network was proposed by Wang (1992) that solved complex valued linear equations.
Deville (1993) implemented a complex activation function for digital VLSI Neural
Networks that required lesser hardware than the conventional real Neural Network would
need. Smith and Hui (1997) used the CVBP to data extrapolation. It was shown that the
traditional method of Fourier Transform to reconstruct the data was inferior to the CVBP
based Neural Network for short data sets. An extensive study of the CVBP was reported
by Nitta (1997) in which the algorithm along with certain problems that the standard BPA
fails but the CVBP manages to solve were pointed out. The paper concludes saying that
the set of problems to which the CVBP can be successfully applied is a research theme in
the light of the problems that the CVBP solves but the BPA fails to do so. Weber and

Casasent (1998) used Neural Networks with complex weights to perform a piecewisce

approximation of plane curves. Recently, some applications of CNN to optics have also

been reported (Takeda and Kishigami (1992), Hirose and Miller (1996)).

[t can be seen that the CVBP is ste.adily gaining prominence although the algorithm as yet
is in an embryonic stage. The avenues for the BPA further open up as the survey
indicates but once established the CVBP can compete with the BPA in problems where
both could be applied. Needless to state that the CVBP would be preferred over BPA in
applications that demand the real and imaginary parts of complex numbers and functions
be retained and no modeling involving a tailoring with these quantities may be allowed.
Such applications require that the physical significance of the complex numbers be kept
intact. Typically, Signal Processing, satellite channel equalization are two areas where

such requirements exist.

Chapter 3

Investigation of Error Functions

I

The chapter deals with Error Functions in detail. The CNNs are studied by varying the
EF. The Error Function approach to data analysis is émphasized from a CNN viewpoint.
Practical data is prone to outliers resulting from observational or experimental errors. If
the Quadratic EF were used to analyze data containing outlier points, the optimization
scheme would result in estimates that depend significantly on the outliers as the
Quadratic EF assigns greater cost to far off points. A different EF, an Absolute EF can
perform better optimization than Quadratic as the cost that accrues to the Absolute EF
due to outliers would be lesser that that with the Quadratic EF resulting thereby in a
better estimate. The present chapter surveys some EFs and studies BPA and the CVBP

from an EF viewpoint.

3.1 Why Vary Error Function?

The BPA as it is applied today employs a Quadratic Error Function (QEF). In fact. most
problems that involve minimization employ a QEF; for example, the problem of
regression in statistics employs the QEF to develop normal equations that are later solved
to obtain the curve of best-fit. A typical procedure involves assuming a form to the data
set (a cubic polynomial with four coefficients) and assuming a Quadratic Error between
outputs of the assumed equation and the actual 'output. By subjecting this error function
to minima by equating its derivatives with respect to the coefficients to zero (that are
referred to as normal equations) the best-fit curve is obtained in the Least-Squares sense.
It is known that the data set obtained while practically experimenting is prone to system
noise, process noise and measurement errors (like parallax). The outlier points contribute
to the offset in the solution to the curve-fitting problem (Rey. 1983). There exist two
approaches to tackle the undesirable affects of spurious data points. The first approach
demands that these points be eliminated completely (by some data processing technique)
and later after weeding out these points, subject the data to a QEF based optimization
scheme and obtain a solution, which can be termed ideal approach. The second approach.

as explained in Rey (1983) requires incorporating a modified Error Function that would

I/

by the nature of design and construction have useful properties to bypass the ill-effects of
the spurious points in the data and obtain a better fit of curve to the data set than the
Quadratic Error Function. Among the many alternative Error Functions proposed in the
m-Estimators approach to data analysis are the Absolute Error Function, Fourth Power

Error Function and so on. For instance. the Absolute Error Function is defined by the

equation

y= |x] (3.1)
which when applied to data prone to outliers and analysis obtains a better curve of fit than
the QEF. This is due to the fact that the cost that accrues to the Error Function due to a
far off outlier point would get enhanced in the presence of a power term in the definition.
Hence, if the error measure were computed by a QEF, the cost accrued would be higher
than would be when the Error Function was the Absolute Error Function. The strategy of
adopting an Absolute Error Function results is a better estimate to the curve of best fit

than the one obtained by adopting the QEF as was demonstrated in Rey (1983).

Taking this as the point of start. the following questions need attention from the
viewpoint of the BPA and the CVBP: how the BPA and the CVBP would perform when
the Error Function is varied, validate the performances by applying them to some well-

known benchmarks. The following Error Functions were collected from various sources.
3.2 Real Error Functions

The Error Functions for the ANN are listed in this section. With usual notation.
e, =T —O,. A reference to all Error Functions listed here is Rey (1983).

3.2.1 Absolute Error Function

The Absolute Error is given by

E=k, | (32)

where »n denotes the number of outputs. Absolute Error is one of several robust functions
that displays less skewing of error due to outliers. A small number of outliers are less
likely to affect the total error and so thev do not affect the learning algorithm as severely

as the Quadratic Error.

3.2.2 Andrew Error Function

The Andrew Error Function is given by

—~
(8]
(o)

~—

0;else

Eo Z{I/n *cos(z*e, zf[e |<1
where # is the number of outputs.

3.2.3 Bipolar Hyperbolic Squared Error Function
The Bipolar Hyperbolic Squared error is given by

E l 2
Zn[_+e j (3.4)

where, » is the number of outputs.

3.2.4 Cauchy Error Function

The cauchy’s error function is given by

E =Z§ln(1+(ei /e}) (3.5)

where # is the number of outputs while ¢ is the tuning constant. Cauchy Error Function.
also known as the Lorentzian function, is one of the most robust functions of statistics.

The tuning constant for the EF is 2.3849.

3.2.5 Fair Error Function

The Fair function is given by
E=Zczme,vc)—1n(1+0e,l/c))] (3.6)

where » is the number of outputs and ¢ is the tuning constant. This function has
everywhere defined continuous derivatives except at the origin. The tuning constant, ¢ is

usually set as /.3996.

3.2.6 Fourth Power Error Function

The Fourth Power Error is given by
E=Y ¢ (3.7) -

where 7 is the number of outputs. This would be useful when dealing with data known to
be free from outliers, or in cases where it is important to minimize the worst-case error.

rather than the average error (Rey, 1983).

3.2.7 Geman-McClure Error Function

The Geman-McClure Error Function is given by

et/ ‘
E= __'..Z.T (3.8)
T l+e

where # is the number of outputs. The function tries to reduce the effect of large errors.
3.2.8 Huber Error Function

The Huber Error function is given by

E= e’Z.,;if el<c
; CQE,]—%lif}e,l 2c

(Huber, 1981) where n is the number of outputs and ¢ is the tuning constant. A typical

(3.9)

value for ¢ is 1.345. When dealing with noisy data, the training values may contain
outliers with unusual deviation from the true underlying function. Huber function can be
used to ignore these outliers, or at least reduce the ill effect they have on learning. The

function hence has good effects of both Quadratic and Absolute Error Functions.

3.2.9 Hyperbolic Squared Error Function
The Hyperbolic Squared error is given by

E=Zln(l'efzj

2 (3.10)
- l+e;

where # is the number of outputs. Hyperbolic Squared Error needs a normalization while

running a training with one of the BPA or variants.

3.2.10 Log-Cosh Error Function
The Log-Cosh Error Function is given by

E= Zln(cosh(e,2)) (3.11)

where » is the number of outputs.

3.2.11 Logarithmic Error Function

The Logarithmic Error Function is given by

E= Z[(l +y,)ln{(l+}"‘%+))H + Z[ﬁ ~y,)ln{(l_y‘%_y,)H (3.12)

where y,is the calculated output using current weights and y, is the desired output

3.2.12 Mean-Median Error Function

The Mean-Median Error Function is given by
E=Z2*(1/i1+e3/25—1) (3.13)

where n is the number of outputs. This takes the advantage of both the Mean Error
function and the Median Error function. Hence, reduces the influence of large errors but

at the same time retains its convexity.

3.2.13 Minkowski Error Function

The Minkowski Error Function is given by

(O]
RSN

E=;|e,\" (3.

where # is the number of outputs and the typical value of r is chosen is 4.0.
3.2.14 Quadratic Error Function
The Mean Squared Error is given by

E=Y¢ (3.15)

21

where 7 is the number of outputs. This is the standard error function (Bose and Liang.
1996).

3.2.15 Sinh Error Function
The Sine-Hyperbolic Error Function is given by

E=;(Sinh(e,)) (3.16)

where 7 is the number of outputs. The function is steeper than the Quadratic Error
Function. Moreover the function is symmetric about the origin and hence the update
involves two parts, the first is the gradient in the first quadrant while the second is

gradient in the third quadrant. In both cases, the gradient is directed towards the origin.

3.2.16 Tukey Biweight Error Function
The Tukey Biweight function is given by

E:Z{cz/é(l—[l—(e,/c)z]alif]e,ﬁc (A7)

c*/6;ifle|>c

Where 7 is the number of outputs and c is the tuning constant. The typical value of ¢ is
4.6851. Tukey Biweight function reduces the effect of large errors and suppresses the

outliers. The contribution of an outlier to this EF hence 1s smaller

3.2.17 Welsch Error Function
The Welsch Error Function is given by

E= Z [l—exp(/c)z)] (3.18)

where 7 is the number of outputs. This function reduces the influence of large errors. The

typical value of the tuning constant ¢ =2.9846. -

3.3 Complex Error Function

The following error functions were considered for the present study. The derivatives of
these functions were computed to implement the basic update rule for training the Neural
Network (eqn. (1.1)). In literature, these error functions were proposed to implement an
m-estimators approach for bypassing or reducing the ill-effects of the outliers. The
functions in each case have been generalized in a way as to retain the form and yet be
operational in the complex variable setting. The surface plots of all the definitions are
tabulated in Table 3.1.

3.3.1 Complex Absolute Error Function
The Complex Absolute Error is defined to be

E=Zabs(a,)=21/5,5,* (3.19)

where n denotes the number of outputs.

3.3.2 Complex Andrew Error Function

The Complex Andrew Error Function is defined to be

E-¥

n

1/7* * cos(z * abs(e,));if abs(g,)<1
0.else

and » is the number of outputs.

3.3.3 Complex Bipolar Hyperbolic Squared Error Function
The Complex Bipolar Hyperbolic Squared Error is defined to be

E=Zln(2—g’6’] (

-
P 2+ &8

(V]
o
Z

_where, » is the number of outputs.

3.3.4 Complex Cauchy Error Function

The Complex Cauchy Error Function is defined to be

E=Z%2—1n(l+(£,£,*/cz)) (3.22)

n -

where 7 is the number of outputs and c is the tuning constant which was set to the Cauchy

constant. The tuning constant for the EF is set equal to 2.3849.

3.3.5 Complex Fair Error Function

The Complex Fair Function is defined to be

o
o
W

~—

E=Y c*|(abs(e,)/c)~In(l +(abs(e) /c))] (

where 7 is the number of outputs and c is the tuning constant which was set to the Fair

constant. The tuning constant, c is set to /.3998.

3.3.6 Complex Fourth Power Error Function

The Complex Mean Fourth Power Error is defined to be

E= Z%(g,gf)z (3.24)

» is the number of outputs.

3.3.7 Complex Geman-McClure Error Function

The Complex Geman-McClure Error Function is defined to be

ce 12 ‘
E___ iZi . _ (
;Hs,a,

(U]
9
wh
~—

where n is the number of outputs.

3.3.8 Complex Huber Error Function

The Complex Huber Error function is defined to be

<c

E:Z 6‘,6‘%;#;&

7| clapsce) - %}z/‘}e,y >¢ (3.26)

(Huber, 1981) where # is the number of outputs and ¢ is the tuning constant. A typical

value for ¢ is 1.345.

3.3.9 Complex Hyperbolic Squared Error Function
The Complex Hyperbolic Squared Error is defined to be

E=Zln[1_€'€’] (3.27)

*
B 1+¢e

where » is the number of outputs. Hyperbolic Squared Error is similar in shape to the

Bipolar Hyperbolic Squared Error function.

3.3.10 Complex Logarithmic Error Function

The Complex Logarithmic Error Function is defined to be

_) abs(g;) — _abs(e) 398
E—Zl:(l+}(,)ln(1+————(l+y))}+Z[(l y,)In(1 q) (3.28)

! - }‘Ll)

where y, is the desired output.

3.3.11 Complex Log-Cosh Error Function

The complex Log-Cosh Error Function is defined to be

E= Zln(cosh(a,a',‘)) (3.29)

where i is the number of outputs.

3.3.12 Complex Mean-Median Error Function

The Complex Mean-Median Error Function is defined to be
E=Y2x (w/il tee 2 i—l)

where # is the number of outputs.

3.3.13 Complex Minkowski Error Function

The Complex Minkowski Error Function is defined to be
E= Z abs(a,)r

where 7 is the number of outputs and the typical value of » was chosen to be 4.

3.3.14 Complex Quadratic Error Function

The Complex Quadratic Error is defined to be
E= Zla &
~ 2 i%i
where 7 is the number of outputs. This is the standard error function.

3.3.15 Complex Sinh Error Function
The Complex Sine-Hyperbolic Error Function is defined to be

E=Y (Sinh(abS(‘?,))j

where 7 is the number of outputs.

3.3.16 Complex Tukey Biweight Error Function
The Complex Tukey Biweight function is defined to be

—_
(8]
(OS]
(OS]
~

E=Z 02/6(1‘[_(Sig/‘/cz)]j;vﬁ abs(¢,)<c : (3.34)
" c2/6;if abs(g) > c

Where 7 is the number of outputs and c is the tuning constant. The constant ¢ was set to

the Tukey constant, 4.6851.
3.3.17 Complex Welsch Error Function

The Complex Welsch Error Function is defined to be

E= Zfzi[l - exp(— (5,.5,* /cz))] (3.35)

n

where » is the number of outputs. The tuning constant ¢ was set to the Welsch constant.
2.9846.

In these definitions, the function’s .form has been retained while extending to the complex
domain. This was done to make sure that the error computed kept the same formula even
while operating in the complex domain. This also makes sure that the surface plot of the
function is close to the plane plot of the same. As a ramification of the fact, the additional
factor that enters the weight update rule in the BPA and the CVBP has the same form.
Table 1 lists the Error Functions, their definition and plane and surface graphs displaying
their overall shape. It may be seen from the graphs that retaining the form of the function

while generalizing preserves the shape of the plane curve.

In sinh EF, the extended version doesn’t keep the odd function property. The complex
function developed from the old error function is an even function in the argument. The
gradient in both cases set directing towards the origin but the same requires two steps in

the real function case. In Table 3.1, the x and y labeled in the surface plots (complex EF)

must be interpreted as the real and imaginary parts of & which in turn is T; — (), (the

target value minus the output of the network.)

ABSOLUTE ERROR FUNCTION COMPLEX ABSOLUTE ERROR
FUNCTION
Def
E:Z‘e,! E=Y abs(e)= +Je,&
Plots
08
a7 g
§ g6} 59
7
508 é s
3 6
éDA ~ f.g N
03 gl,‘o
02 Lol
01 lﬁ -D‘E 04 02 4\0’L U‘E DI‘I UE J& t b‘..f \‘\'
ANDREW ERROR FUNCTION COMPLEX ANDREW ERROR
FUNCTION
Def gy VA Feoslrre e <1 RS cos(z* abs(&,)):if abs(,) < |
- 0:else b Z 0;else
Plots

Aandrew Error Function

BIPOLAR HYPERBOLIC ERROR

COMPLEX BIPOLAR HYPERBOLIC

SQUARED FUNCTION SQUARED FUNCTION
Def o 5 -
= "€ = l P A, - 6'6'
£ Zln[z+efj £ Z n£2+e,£‘,'
Plots
18 T T /_
: ‘ 2357
e %0’9
[O U N SRt SR SORE SO ?\9 N
LN A e
-1 .08 05 04 D2 0 02 04 06 08 1
CAUCHY ERROR FUNCTION COMPLEX CAUCHY ERROR
FUNCTION
Def R
2 5 c” « 2
EZZL“‘(H(@:/C)) E:Z—i—ln(l-r-(g,s, /c))
Plots

- [t}

w

Cauchy Error Function

A

FAIR ERROR FUNCTION COMLPEX FAIR ERROR FUNCTION
Def ,
k= ’Zc“ [Ge, i/c)— ln(l + Qeii/c))] E=Y c*|(abs(e,)/)~ n(1 +(abs(s,)/c))]
Plots
35
25 .
F w1
i 53 |
g
- 1 g 0‘9
K
05
ol
FOURTH POWER FUNCTION COMPLEX FOURTH POWER
== FUNCTION
Def 1 1 .
E=Y ¢ E=) —(g¢)
¢ Z S(88)
Plots
1 T T T T ‘! T T T T
08 ;
o8t
gUT OA" ‘..;.
I-?UE 5‘ JZO :: : i H
B sl v, N
L§0.e‘. E ;o {'/,
g o g 1 1,/ R
Eua % g0 b R
02 7 - SO
01 g ’ Q o
% ,L . o -
™ ¥

g

COMPLEX GEMAN-McCLURE
ERROR FUNCTION

1+ ¢.¢,

COMPLEX HUBER ERROR

FUNCTION

GEMAN-McCLURE ERROR
FUNCTION

o
uo3un 4 Jong

an|DIW-uewagn

HUBER ERROR FUNCTION

uoHdUN J 1013 13GNH

Def

Plots

Def

Plots

-

HYPERBOLIC SQUARED ERROR

COMPLEX HYPERBOLIC SQUARED

FUNCTION ERROR
Def
l—e- l-c¢g’
E=)In = E=) In| ——
- Z (He,‘j Zn[]+6‘,£,]
Plots
LOG COSH ERROR FUNCTION COMPLEX LOG COSH ERROR
FUNCTION
Def
E=> ln(cosh(e,2)) E=)Y ln(cosh(e,e,*))
Plots

LogCash Errot Function

AN NS EUARYS WA

32

LOGARITHMIC ERROR FUNCTION

COMPLEX LOGARITHMIC ERROR

FUNCTION
Def 1)]
— +d ""‘/ ‘ abs(e, T abste !
E—ﬂ:(Hy‘,)lr{(y%“’)’,)ﬂ.kz{(l_y")h{ y%l—y,)}:] E= Z{(l +) In(l +?%I‘—:-)}+ ZL(I -,)ingl - lh’(.‘A'."/“)l)J
Plots
£
MEAN-MEDIAN ERROR FUNCTION CbMPLEX MEAN-MEDIAN ERROR
FUNCTION
Def
E:Zz*(1/11+ef/2)-1) 5222*(,/h+g,gl*/zj_1j
Plots

Mean-Median Enor Function

SRR T T st
Yoo m=wow
/ Sy - -

LRI R RARN

MINKOWSKI ERROR FUNCTION

COMPLEX MINKOWSKI ERROR

FUNCTION
Def
E=3le]| E=Zabs(£l)'
Plots
1 el
g 00 Lo
g 80
e
S R % A
& o°
EOA maman meeee z 600 o
£ 40°
AN R
+ A e +
QUADRATIC ERROR FUNCTION COMPLEX QUADRATIC ERROR
FUNCTION
Def
A)
E=ZEQ’2 E = _l_gigl
Plots

[198

S

Quadratic Error Function

Core Queidiw

SINH ERROR FUNCTION

'COMPLEX SINH ERROR FUNCTION

Def
E= Z (Sznh(e,-)) E =Y (SinHabs(z,)
Plots
48
L:-:_ :% :f
a
>
TUKEY ERROR FUNCTION COMPLEX TUKEY ERROR
' - FUNCTION
Def A3 / SA\F
- c:/é(l—[l—(e‘/c)"]')if@,}gc ;.=VJN,"@El—[l—(u,e"g’u')] af ubs(g) £ ¢
£ Z{ c?/6:ifle|>c I “71) o .lh\(/:)l)>c‘
Plots

Tukey Error Function

WELSCH ERROR FUNCTION COMPLEX WELSCH ERROR
FUNCTION
Def . i
E= Z %”[1 —exp(— (e, /)’)] E= Z—C—z—-[l -~ exp(— (5,5,* /c?))]
Plots

25 T T T T T T T

Welsch Eror Function

Lo NSedn

3.4 Properties of Error Functions

The properties of the various Error Functions are summarized here. The seventeen Error
Functions employed in statistical analysis have been used for developing the BPA and the
CVBP. The update rule of the BPA demands the EF be at least once differentiable from
which it becomes clear that the functions be at least C’. Finitely many discontinuities or
countably many of them can always be bypassed by defining the update rule accordingly
by breaking the real line into finitely many or countably many intervals and developing a
form of the update rule in each of the intervals separately. Of the many parameters that
should be set for running the algorithm, the weights, biases. architecture, must be kept
fixed to study the influence of the Error Function while EF based training algorithms run.
Each of the EFs has its unique properties that statistical methods cash on while
implementing them. These extended error functions were used to develop the CVBP for
training CNN. A comparative study was later done to sec how the ANN and CNN

performed when EF was varied.

The Absolute Error Function is continuous through out the real line and is differentiable
at all points on the line except the origin. As the real line is partitioned into two

disconnected sets by the origin (the only point where the function is not differentiable).

36
the update rule has a two-step definition — when the error is positive and when the error is
negative. The absence of an index (the power, unlike the Quadratic EF) is a
distinguishing feature of this EF as this enables smoothing out the ill-effects of the outlier
points that would otherwise have offset the best-fit of the optimisation scheme. The
contribution to the EF from the outlier points would be on the same scale as the actual
data points of the problem and hence the ill-effects due to spurious points are nullified to
a great extent. On the other hand if the data were normalised to a specific region so that
all the entries in the data set are small real numbers lying in [-1.1]. the contribution from
the outliers is once again on the same scale as the actual data points. The gradient for
both parts in the definition in the update rule is directed towards the origin. The complex
Absolute Error Function is a generalisation of the Absolute Function defined to compute
errors using the absolute function yet retaining the functional form. The definition is a
surface as both real and imaginary parts are involved in it. It can also be noted that the
function form in fact is the quadric, cone. It has all the complex weights of the CNN in its
definition. The update rule for the CNN steers the real part and the imaginary part of the
weights to the minima separately. The problem of local minima that existed in the ANN
repeats while studying the CNN in general and this EF based algorithm in particular. As
is clear the initial weight and the learning parameter decide how the training should
progress. The dynamics of the real part depends not only on the real parts of the weights
but also on the imaginary parts as the updates of the real and imaginary parts are
dependent on each other (are coupled. Appendix 1). The complex EF is not differentiable
at the origin as the function inside the radical is always positive while the function as a

- whole is not differentiable at zero.

The Andrew Error Function is characterized by a discontinuity at the origin and two
continuous functions on either side of the discontinuity. The design of the function is
basically to nullify the effect due to one kind of data - here in the definition, the data
suppreséed by the function are those that are positive valued. The definition also shows a
periodic function on the other half characterized by several maxima and minima. Hence
to implement the function, the network was set to drive the training in the direction of the
negative gradient towards one of the several minima. It can be easily shown that the
points of maxima of the sine function are in fact points of unstable equilibrium. Hence
the training process steers the weights in a way as to reach one of the minima points. The

point beyond which the function is suppressed can be chosen as desired while the

dynamies of update operate according to a sinusoid by definition. The extension of the

Andrew Function to the complex variables was made retaining the functional form but

extending the definition to take complex values. The surface plot of the complex

definition reveals that the function is rotationally symmetric about the z-axis. While

implementing the function, the training was directed towards the minima that are in the
1

3 -

A

present form, concentric circles lying on the plane z =

The Bipolar Hyperbolic Squared Error Function was so defined because the error as
computed from the network can take values in the interval [-1,1], and hence for this error
function, a bipolar sigmoid activation function can be employed (as it assumes values in
the positive and negative quadrants). The function is characterized by unique maxima and
hence the training process should steer the network so as to attain the maxima of the
function. While implementing, the sign of the function is reversed so the update runs in
accordance with accepted conventions. The complex function was defined by retaining
the form of the function in the real setting but extending to accommodate complex errors.
The surface is characterized by a unique maximum and rotational symmetry. The surface
is differentiable with respect to real and imaginary parts of the complex variable that now

appear as argument of the function.

The Cauchy Error Function has one minimum point at the origin. The function is
symmetric about the y-axis. The training steers the weights so as to reach the minimum of
the function. The function is defined through out the real line, its continuous everywhere
and differentiable all through. The function changes convexity as x increases. As a
ramification of this fact, the update from the slope function based on this error function at
larger values of x would be smaller in comparison with that of the Quadratic Derror
Function. The complex Cauchy Error Function was defined to perform the Cauchy
function for the complex variables. The surface plot reveals a unique point of global
minimum. The surface is differentiable through out the real plane. The surface is also
characterized by changing convexity as the radius vector increases. It is rotationally

symmetric about the z — axis.

The Fair Error Function has an absolute function in the definition. which makes the Fair

Function continuous at all points on the real line. It is differentiable at all points exeept

the origin. The function remains convex with respect to the x — axis thorough out the real
line. The parameter ¢ in the definition only alters the shape of the bell by making it wider
or narrower as it varies. The complex Fair Error Function is rotationally symmetric. has
one global minimum (as a function of the real and imaginary parts of the complex

argument). The convexity with respect to the xy — plane is maintained all through.

The Fourth Power Error Function is smooth over the whole real line. Unlike Quadratic.
the function rises rapidly and is more convex with respect to the x — axis than the
Quadratic Error Function. The weight update is more rapid for error values greater than
unity and the rate of training is diminished for fractional errors, lying in the interval [0.1].
The contribution from the cube term that results from the form of the error function is
hence a parameter that enhances the update if the error is greater than unity and
suppresses it if then error is fractional. The complex Fourth Power Error Function keeps
the form of the real error function but is defined so as to be able to operate with complex
errors. The error function unlike the complex Quadratic Function increases more rapidly
for errors more than unity. The surface is rotationally symmetric about the z — axis. The

surface is smooth for the derivatives of all orders exist.

The Geman-McClure Error Function was defined to suppress large errors on either side
of the origin. The asymptotes of the function suppress the outliers. For smaller values of
the error the function approximates to the Quadratic Function as the denominator can be
approximated as unity. The function is symmetric about the y —axis. The extension to the
complex domain retains the form of the function. The principle of the function hence is
carried over to the complex domain — for smaller values of the complex errors, the
function is just the Quadratic Function, while for the large values the denominator comes

into play and the function deviates from being Quadratic.

The Huber Error Function is defined piece-wise. The characteristic feature of the
functions is it involves the Quadratic Error on the one hand and an Absolute Error on the
other. The parameter. ¢ in the definition is the point of demarcation to assign a domain of
operation for each error function. The definition has both features — of the Quadratic
Error and the Absolute Error. The function enables one to optimally choose error
functions. If the data were prone to outliers and if their scatter is biased to one side. an

obvious choice would be to suppress the influence of these spurious points by assigning

39
an Absolute Error Function to the side and set Quadratic Function to operate on the other
side. It was found that in statistical analysis such choice indeed bettered the results as a
judicious assignment was proven to be effective. The complex Huber function was
defined to generalize the real Huber Function to the complex variables retaining the form
the function. The principle of operation of the function remains the same as the choice of
the parameter ¢ assigns the domains of operation of the Error Function. The Quadratic
and the Absolute functions exist in the definition and the assignment will accordingly
suppress the ill-effects of the outliers and other spurious data by evaluating the assigned
function accordingly. It must be noted that the extended function is a paraboloid of
revolution for the part of the definition that was Quadratic and for the part that was

Absolute function, the extended version is a cone.

The Hyperbolic Squared Error Function has normalized errors for otherwise the argument
of the function becomes negative and the function outputs complex-values. The function
is symmetric about the y-axis and has a unique maxima point (at the origin). The training
procedure was developed to steer the weights so as to enable the network to reach the tip
of the function. The extension of the Hyperbolic Squared Error Function to the complex
variables results in the retains the functional form but was extended to take complex
numbers. The functional form is retained but the argument is modified to operate with
complex numbers. The surface is characterized by a unique maximum at the origin to
which the training process should steer the network error to. While implementing the
function a negative was prefixed to the error surface and the usual gradient descent was

developed for the function.

The logarithmic cosine error function is just the Quadratic Error Function for large values
of the error as the hyperbolic cosine can be approximated by the exponential function for
large values of the argument. For small errors near the origin however the function rises
slower than the Quadratic. The function finds application at places where small errors
should. be suppressed while large errors should be treated with a quadratic function. The
function is convex through out the real line and always lies below the Quadratic function.
The complex version of the Logarithmic Hyperbolic Cosine function has one global
minimum in the definition. The function is convex with respect to the x3* — plane. lor
smaller values of complex error the training would be at a lower rate than the

conventional Quadratic function owing to the low slope of the error function in the

40

vicinity of the origin. For larger error values the function behaves like the Quadrétic

Error Function.

The Logarithmic Error Function shows a unique minimum. Its convex with respect to the
x — axis. The function maintains its curvature through out the real line. The complex
version of the function has a unique maximum. The training algorithm was developed

over the negative of this function, steering the network weights to the maximum point.

The Mean-Median Error Function behaves like Absolute Function for large values of the
error. The function is convex through out the x — axis. For smaller error values the
function behaves like Quadratic Error Function. The function finds best application for
data that are prone to an outlier scatter that should be treated by assigning a function to
nullify the ill effects due to them. Since the Mean-Median Error Function behaves like
Absolute function that allots less cost that the conventional Quadratic function would
have, the solution obtained by this function would be better than the one obtained by
employing Quadratic function. The complex version of the Mean-Median Error function
carries the above-described features forward to the complex plane. The extended function
hence, behaves like the Quadratic Error Function for smaller values of the complex error.

For complex errors large, the function is remnant of the Absolute Error.

The Minkowski Error Function is characterized by a parameter that appears as the index
in the definition. The additional feature of the function makes it wider than it actually is.
in that the other standard functions studied thus far (like Absolute Error, Fourth Power
Function, Quadratic Error) can be obtained as particular cases of this function (by
accordingly setting the index). For even indices the Minkowski Function behaves like the
Quadratic function typically (for all others in this class have similar properties like
convexity towards x — axis, symmetry about the y — axis). The odd indices generate
functions that need a piece-wise defined update rule for the function would be symmetric
about the origin in this case. The complex Minkowski Error Function keeps the form of
the actual real valued function. The Sinh Error Function is symmetric about the origin.
The computation of slope should be directed towards the origin in the first and the third
quadrants separately, for which the update rule must be defined in these quadrants
accordingly. The function is smooth and maintains convexity through out the x — axis.

The slope computed from this EF varies according to cosh(x).

41

The complex Sinh EF extends the Hyperbolic Sine function to the complex domain. A
complex conjugation was employed in the argument to the function that makes the
extended complex function an even function: This is rotationally symmetric about the z —

axis. The surface maintains convexity with respect to xy — plane. The steep-ness of the

slope increases as the index rises.

The Tukey EF is continuous through out the x — axis. The function suppresses the affect
of outliers that lie beyond a fixed value. ¢. On the other half, Tukey is a polynomial to the
power six. It maintains the convexity with respect to the x — axis but gets concave at the
point (c,0). The complex Tukey has a similar definition that retains the structure of the
function but extends the domain of operation to the complex variables. The surface is
convex with respect to the xy — plane for small values of the error and changes convexity
once before restoring back to convex. The weight update hence depends on the part of the
surface at which the error vector lies. The rest of the surface is the plane. The

construction retains all the properties of the real Tukey EF.
The Welsch EF is designed to suppress large errors and give a Quadratic function like
performance in the vicinity of the origin. The function is convex with respect to x — axis

near the origin and has the asymptote y = The complex version of the function

o I T,

retains the form but operates with complex errors. Convexity prevails near the origin. the

2

ct . o .
plane z = 5 is an asymptote to the surface. The function is designed to suppress large

errors and give an Quadratic function like performance for small errors.

3.5 Benchmark Problems
The Error Function based Neural Networks were applied to the Benchmark Problems
(Dagli, 1994). In the following, a brief statement of these problems and their significance

is presented.

The problems and their data come from different fields. As a consequence. nothing about
the data is known, in fact the order of differential equations governing the system, the

parameters and their effective ranges are varied and it becomes extremely difficult to

42
compare the performance of Neural Networks and their training algorithms. To: estimate
the strength of the Neural Network and to benchmark the effectiveness of Neural
Networks to solving different types of problems arising from various fields, researchers
have identified Benchmark Problems (Dagli, 1994). They represent problems that offered
a challenge to Neural Network algorithms, thereby contributed to the development of the
field. Any new algorithm in the area of CNN must hence be directed toward the

Benchmarks to study how it performs as compared with the already existing ones.

3.5.1 The XOR Problem

In 1969, Minsky and Papert performed a series of experiments to ascertain the Neural
Network’s ability to capture input-output maps. Rumelhart, Hinton, Williams (1986)
studied the question of learning representation in multi-layered Neural Networks.
Mapping problems are one class of application of Neural Networks (as opposed to
problems of classification where the Neural Network is trained to capture many-to-one
maps). The study of applying the Neural Network algorithms for training nets to map the
logical gates is important from the viewpoint of hardware development. It is well known
that the NAND and NOR gates are universal approximators and if the Neural Networks
could be made to perform these gates, any logic could be built and implemented using a
Neural Network based hardware design. The study of Minsky and Papert led them to
obtain Neural Network designs for the standard problems of AND, OR, NAND, NOR.
The results showed that a linear decision boundary is all that was required to perform
these mappings. It was also observed in the study that the XOR problem was significant
as the solution involved a non-linear region to separate out the outputs. The mapping of
an XOR problem is considered as an example in the present study. The question of
whether Networks capture a given logic (posed as a mapping problem by developing a
. truth table of the logic) can hence be equivalently stated in terms of the Network's ability
to capture NAND and NOR gates as any logic can be expressed in terms of these. The
following diagrams indicate how the mapping of the OR can be solved by a linear
decision boundary. Fig (b) shows the XOR mapping that requires a non-linear boundary
to demarcate regions as belonging to different classes. The extension of XOR as was
presented in Nitta (1997), is

(1) The real part of the output is unity if the first input is equal to the second input

else it 1s zero

[k}

04

02

33

43

(ii) The imaginary part of the output is unity if the second input is equal to unity else
it is zero.

Taking the extended definition, the truth table for the Complex XOR (CXOR) taken as
the training set is the first set of eight paiterns in Table 3.2. The rest of the combinations
make the test set but the simulation was made over the whole sixteen patterns. The
designed network however was tested with all the sixteen patterns. A 1-5-1 CNN was
considered with the CXOR problem. The same map was also solved by using a 2-9-2 EF
based ANN. In addition, the XOR map was solved using the EF based ANN és well. The
learning rate was set equal to 0.1, the target error was set to 0.0001. The experiments
were run thrice and averaged values of epochs for convergence have been tabulated. The
mapping performance of EF based CNN is shown in Table 3.4. As can be observed from
Table 3.3, the CNN solved the CXOR problem more efficiently requiring lesser epochs
than the ANN. On the other hand, the standard ANN needed mofe epochs to solve XOR
than CNN required to solve CXOR.

ALinear Decision Boundary for mapping the OR Gate A nan-Linear Cecssian Eoundary for mapping the Sxz..:+2-JR Gate Table 3,2 Complex E){Clusivc—OR
W : Serial
| . 3 Number Input | Input 2 Output
A AT N | 0 0 I
™ ot A '\\nan-Lmeav Uecisia- Sounda-y 0y 0 ; A
ﬁsmn Baundary ‘\\ \ : l 0 0
08 X \\ . 4 t | 1 -1
\ \\ < 3 1 | i
. :
04 ~ 6 1 | [
N N -~
\ N\ N 7 X i i
Wy, 02 \ 8 =i |+ |
\\. N 9 0 | i
\, \ N -
N 0 Y 10 0 i 0
™ T : 1 i [0
N
. . . 02 — — - - 12 1 () 0
2 0 t: 04 0E 08 1 a2 0 0z b4 D& O ! 3 1 e 7
' Y]
() ®) S T O
Fig. 3.1 (a) OR Gate showing a linear Decision Boundary (b) XOR 1 T T | i

Gate with a possible non-linear Decision Boundary

3.5.2 The N-Parity Problem

The problem is to train the Neural Network to differentiate between odd and even parity
in the n — bit Einary number. The problem was first reported by Minsky and Papert
(1969) and further work was done by Rumelhart (1986). Fahlman (1988). Tesauro and
Jensens (1988). The problem involves capturing the input-output map is assigned (0
words with even parity and a different output assigned to words with odd parity. In the
complex variable setting, the outputs assigned were unity for even parity and the

imaginary unit, i for odd parity.

Table 3.3 Epochs for CXOR and XOR Problems solved using CNN, ANN

Average epochs with Real and Complex Error Functions. Learning rate was 0.1. Target Error
was 0.0001
Error Function CXOR with Real CXOR XOR with BPA
BPA (architecture: 2-5-1) | (architecture: 2-3-1)
(architecture: 4-9-2)

Absolute Error 213500 12100 22500
Andrew Error 29500 20300 33300
Cauchy Error 18300 12900 32000
Error Fourth Order 25100 11000 33000
Fair Error 20100 15100 20000
Geman-McClure Error 27500 21000 29000
Huber Error 25100 10000 15000
Hyperbolic Squared 28100 23300 20600
Bipolar Hyperbolic 27200 20200 32500
LogCosh Error 15100 12000 23300
Logarithmic Error 24900 20000 31000
Mean Median Error 15200 12000 16000
Minkowski Error 16000 12100 33000
Quadratic Error 29500 10000 17600
Sinh Error 17100 14200 20000
Tukey Error 21900 18100 25000
Welsch Error 25000 21000 33000

Table 3.4 The result with different CNNs tabulated for the CXOR problem. The simulated points shown in
dots are close to the target points shown in asterisks. In all frames. the asterisks are positioned on
the vertices of the rectangles.

andrem Sy

Aosolute Error

1 oo oo g e Y N e]
as}’ :e‘[-
L] g
a7 13
06 23 4
a5 C4
a4 ;:3}
03 L:IL
a2 .

1

o B ¢ 0 e

YO O WU TR VU PR

0 ¢1 o2 03 34 05 08 07 DO& 09

Bizziar Hyperbolic Error Cauzhy Enor

osp
vt
0ek o

i
05k 4

LI . o RS R S R T P T TR

Table 3.4 Continued

N

' Fau Errar
. o) - Ee i
osf . i
ve) L i
4 |
orl] vet ", 1
a8 a7 ;
05 | 113 '
04 oey 3
| !
03 ue |
i
02 03 i
1 : |
o i 1
0 o 02 03 Qo4 0L LE a4 ae (] !
| |
o PN < K s LR g :
i
. Geman McCiure Error
LET 1 '
a8t «) <4
07
08 &
0s iy
a4 T
03 Tl
02 J
Q1
. .) s A . ":
Y M Y YT Ty FEER £ 1 e 08 Uz 1
“eganitm
Hypetchs Era: —_————
'
o . 1 .
og}” . i .
| . -
07 J .
08 . 4
05 | .
04 .
E :) .
02 . 4
o1t . - 1 . :
_) ! R F A R T T T T
0 o' 02 a: 0¢ 0% 08 07 0F B
Log Cosh Envr MeartdeSian
' - b e e .
o " - .i
1] 4 i .
ve iz b
1
4 ot I
i
08 oE
s
!
o4 T |
]
o3 1 - 1
i
02 E Tk i
G * . . 4 oo 1
L. o
O 01 vz C: te 95 0k o7 Uz US EB ! T .t e U i

Table 3.4 Continued

46

Minkowski Error

o9}

o8
a7
e
s
04
03
02

o1

Quadratic Error

01 02 03 07 08 03 b
(] 77 93 A4 Af <f EEREE
Sin Lrese
, S L ’ . .
0a ceb -
08 ce
a7 o7
. cs :
0s ce
04 C4
0s c3
02 £
cipe
*B} .
"
0 M v I . (] 37 33 0: 35 ©f BCE
01 02 03 34 08 08 c7 48 08

welsch Error

)
nef

0?

0s
04
03
u?2

oap e

a2

'E)

de a5 086

The n-Parity was worked out for # equaling four, eight and sixteen all of which produced

good result with both ANN and CNN. The n — parity problem was used to compare

different training algorithms’ by comparing the epochs needed to produce a perfect result.

A further extension of the n-Parity problem involves developing the map in a generalized

form by incorporating the definition of the Complex XOR to compose the arguments

instead of the traditional real variable based XOR. The CXOR map as displayed in Tablc

2 can be seen to be a non-commutative map. Owing to this property. the 3-Parity

complex map turns out non-associative. The two orders of evaluation of the inputs are

(¢, "ey)ey

Kl

¢, (cy cy)

47

where, ¢, are the three inputs. In the first combination, the first and the second are

composed and the result later composed with the third. In the second combination, the
first is composed with the result of the second and third. The data matrix for this problem
is displayed in Table 3. In each row, the two ways of composing the arguments are shown
for the same input arguments. It is by no means clear whether the CNN learns both maps
defined by the compositions or what the network’s behavior would be for non-associative
transformations. It was observed during the runs that the first Way of composing (eqn.
(3.36)) defines a map that the CNN captures while the second sequence of compositions
(eqn. (3.37)) didn’t get captured even after running the algorithms for 15000 epochs. The
results are displayed in Tables 3.6, 3.7. The reason for the same is attributed to the fact
that the distance between the intermediate complex number as they are composed
associatively changes in accordance with the sequence of operations for computing the
maps. As explained for the n-Parity problem (Dagli, 1994), the problem was pronounced
Benchmark because the input patterns that are relatively close are required to be mapped
into different outputs which is what makes the problem a difficult one for the algorithms
of the Back-Propagation family. A similar phenomenon is observed in the complex
setting extension as displayed in Table 3.8 where the distances are computed in the

following sequence. Referring to eqn. (3.36), the first computation was distance between

the vectors (¢, oc,) and ¢, and a second distance between the vectors (¢, o¢,)and

(¢, 0¢,)oc,. As shown labelled in Table 3.8, the vectors of distances have been plotted.

these reveal how the intermediate complex numbers are hidden in the final mapping of
the two compositions shown in Table 3.5. As a net effect of the interplay between the
peaks of cells (¢) and (d) of the Table 3.8 the mapping was captured. There are
effectively more peaks in cells (a) and (b) of Table 3.8. which disrupt the convergence

process, contrary to the peaks of cell (d) which are more flat.

Table 3.5 Complex 3-Parity Problem is Non-Associative

48

C c, c c

I) : ¢ o(eyec;) ! €2 € (c,ec.) ¢
0 0 0 0+i 0 0 0 0
0 0 0+i 0+1 0 0 01 01
0 0 | 0+ 0 0 | 1 -1
0 v [! 0 0 X 0
0 0+ 0 1 0 0 0 o
0 0+ 0ri 0 0 0+i EX X
0 0+ 1 0+i 0 0+1 1 0~
0 04 |+ 1 0 0+i 1+ 0
0 1 0 | 0 | 0 0
0 | 0+i 0+i 0 1 0+1 | =1
0 1 1 0 [1 | [
0 ! 1 +i 1 0 1 e 0
4] 1+ 0 | Q 1+ ¢ |
0 1+ 0+1 0+1i 0 | +i 0 0-1
0 1+ | 0+ 0 | +i | 01
0 |+ | +i 0+ 0 f+i 1 -1 0
0+i 0 0 0+1i 0+1 0 0 |
0+1 0 0+i 1+ 0+i 0 0+1i 0+
0+i 0 1 1 +i 0 +i [¢] 1 -1
0+i 0 1 +i 0 0+ 0 1+ 0
0+i 0+ 0 0 0+i 0+i 0 0
0+i 0+ 1 0+i 0 0+i 0+i 0+ 0-i
0+i 0+i 1 1+i 0+i 0+i | 0-i
0+i 0+i 1+ 0 0+1 0+i |+ |
0+i 1 0 0 0+ | 0 0
0+ | 0+ 1+ 0+i | 0 1 -
0+1 | 1 0 0+1 | 1 0 -1
0~i I T+ 0 0+i i T~ 0
Qi |+ 0 0 0-+1i |+ 0 !
0~ 141 0+ 1+ 0+i 1+ 0+ 0 -1
01 | +1 | 1 +i 0+ 1+ 1 0.,
0~i | +1 1 +i 0~i 0-i L+ 1 -1 (
1 0 0 1+ 1 0 0 !
1 0 0+i 0+i 1 0 0-i 0 -1
1 0 | 0+i 1 0 | 0 -1
| 0 |+ 0 ! 0 [8]
| O+i 0 0 | 0+1i 0 ()
| 0+i 0+i 0 1 0+ Qi [
1 0+i I 0+i 1 0+i 1 0+
1 0+i 1 +i 0 1 0+1i 1+ 0
1 1 0 0 1 1 0 0
1 1 0+i 0+i | | 0+1 01
1 1 1 0 | | 1 01
1 1 1+ 0 | | |+ 1
1 | +1 0 0 | 141 0 |
! | +1 0+i Qi 1 1+ 0~ 0-i
1 |+ | 0+i | 1+ 1 01
1 1+]+ | i | 1+ 1~ i
1+ 0 0 0+i 1+1 0 0 1
1+i 0 0+ 0+i 1 +i 0 0+i 01
1 +i 0 1 0+i | +i 0 | 01
1 +i 0 1+ 0 1 +i 0 K 0
1 +i 0+i 0 0 1+ 0+ 0 0
| +i 0+i 0+1 | |+ 0+i 0 [
1+1 0+i | 0+i 1 - 0+ | 0
1+ 0+ 1 +1i 0 1 +i 0+ 1 0
| =i | 0 0 1+ | 0 0
| - | 01 0~ | i 1 0 1 -1
1~ | 1 | |+ | | 0
1+ | 1+ 0 |+ | IR 0
I+ 1+ 0 0 1+ 1+ 0 [\
1+ I+ 0+1i 0+1 1+ [01 01
1~ | i | 0+i 1 i 1 i1 1 [
I+ 1+ 1+ (VRS 141 [B 1+ 0

) - wqen (w.ov). 11IE TaDle displays non-associative
wwapping captured by EF based CNN. The data for the map is as in Table 3.5.

Absolute Eerae

e .

nz
06
s
a4

02

ar 0? 03 04 G5 Q6 07

Bipolar Hypervanc Enror

Eaunn Powst B

e o4
05 (5 :
or e .
08 e
!
[H cs .
a4 e .
03 ¢ 3 . H
0t . N SRR
. b, AR
07 03 0¢ :5 a6 07 a8 "6 a1 82 03 0« 08 G& 4T 33 as
Gerar il Enar .
' T ' cat
2., DT >
0e &N -
|
08 o5y
a7 orf B
08 CE',- :
05 t i
04 i
a3t 0 .
02 . . .
X1 PPN . - .
G AT 3 N3 re -5 nh a7 A 09 1 NTon: ce af te o ntod

Table 3.6 Continued

wn

Hyperbahic §ar

; Legarrmie Ermor
usf . s
ue ' ©
'R - -
ue ‘]‘ fes i
e i e |
04 4‘ ca i
" i
E [T . 4
oz,] e v . R
e b . i . ce e
nrpote, . { PEREEN ‘ :]
A ar 61 04 T c& 07 [B I T P T
Loy Cask =ce
[P - . .
ost . . '< o
. . | .
08 i
07 - w‘
l 1
05 i s .
s b o ;
|
(K] - [
o3 . . ! i
o2l o . ;
[FRE by .

Minkiwss

etri - Few

DETN - B .
0 L e
07 4 5
0k :
ue ¥4 1
04 La
03 (313 .{
02t ‘.‘. . “
01 - oLt
. D'l. 0r 03 0e IF L7 0% F T
Sevn Erte ey B A
A
08 N
[-

Table 3.6 Continued

Weisch Ewror

(1 I
08
o7
s
as
04
03
02

o1 o

01 02 ©03 ¢ 35 068 07 08

51

Table 3.7 Comp[ex 3-Parity problem, composition as in eqn. (3.37). The table displays non-associative
mapping. The data for the map is as in Table 3.5. This map didn’t produce satisfactory

convergence even after 15000 epochs

Azscte Brror Angrew Eror
! !
Lid 09 ,‘
08 08 i
!
a7 [N N
1
Qg 0€}
l !
o5} 0}
o4 04
os'[03
0:+ .. 02
ot L o
' |
3 a: 03 - C a6 0s ! R 07 1¢ 4 0f 7 1F 03
2ens pmerni B by B
= : .
a- 1 09
' |
08y 4 0B} 1
I (' i i
N By 4
o 1 ot i
0E] (133 i
| ! !
ve i e !
[\ l cat i
03 1 ey H
i -
c2 1 (333
[4 L
I 81 0: 0F ¢ 5 cE a7 ne @9 1 o 0i &+ 05 6F a7 06 6%
Far Enor Founh Powe: Error
] 1 i
[ng'[. H
.]
c: o8 i
¢ 1 ek
s | LEH
s i re.
ce { c4
|
5] 1i v -
[| .
¢ LA
]
3 k) 1 [FEECCEE 2 n nY t: 45 0 16

Table 3.7 Com_hmcd
{8 5 e e gereren
W dTg STAfT Y devrs SR
e w0 o 149338

*anesan g

po e - . . v e e = ey e g e e e e e
' . < - A
i . . . - p . . -
L P .. o . . . ™ . - . o . - . . =
; - - ~ . . el . A 4 . W p
. . . T e -t Je e w . .
. . . - .t o i * - * .
. . e i . . - . N .
. : . = . . . e 3 w T
. . - H = i . < H :
= * w = &£
T it £ b z = = .
i v z . o 2 = 3t &
: o B ’ 3 . . H
. . ; T- . I b4 £ 5 . p S5 [4
- . B . .
. - . . . - . . N e . -
. = . o . = P . . s
. . L N - - - ‘ . . o
. . - T . "] . R -
PN e el o [. e e PYURPRR S P B
»oEE U W e S S N T 2 T R T 4
O N e S S5 omE S v ou o
t
1~y = p e e
. . . T - Py v " - . P . <
- H . ; T 3 . . y ., . =)
P = LA . L.
. @ - . .o,
. c . . o < . . o
M = . P b . . . o
. . - . L . © . .
. B vt = .
. . . e o B o IR o . -
. - ~ . - . . . =
. . " J R a9 .
N . B A o .
i = . 3
® . . w . o .
3 z © w
g s i . bl
2 H bl "
Eh 2! .. o
El . = 3 . . -
K3 - 5 . - . . =
| . ~ .
,_ x . . . to) .
H - . < N . v e . - . . -
i .. . 2) . o .
. B . < . T .t e - g
. - o . . . < . . . |°
S . EENPRESERTI ; . T - . - . pt
. . i . - . ¢ 5
(I . . h=4 . . o
! _ -
- n - o~ o o - - - = . - sy
= = = = = ——t— s . o o
2 2 3 = = 5 3 o = R T et e) w e T ® o~ @ @ w ™ N -
a2 B L5 9 354 5 S o e o G u 9 Z e 4 2 o B o &

Table 3.7 Continued

Sinh Enor Tukey Enror

08 . o R us
. . 1

ns

o
«

Q4

aif ¢

0 01 02 03 04 35 06 07 08 EI.’E

wWelseh Emer

" o e
ot 02 03 04 €5 g6 07 18 09

3.5.3 The Coding-Decoding Problem

Ackley, Hinton, Sejnowski (1986) posed a problem for internal representation testing in
which a set of N, orthogonal input patterns get mapped to a set of Ny orthogonal output
patterns. Internal representation is a study that involves deciphering how the input
patterns get transformed when input to a Neural Network. A suitable number of hidden
layer neurons N, need to be selected to capture the input-output map. The mapping
obtained performs a coding of the N, bit input pattern onto an N, bit pattern and an N, bit
pattern onto the N, bit output pattern. The first half of the mapping from input to the
hidden layer is the coding part while the rest of the map from hidden layer to the output
layer is the decoding part of the problem. The Benchmark problem is important to
evaluate the network storage capacity and has application to data compression and
transmission. For the particular case of Ny = N;, = N, N, was shown to be log2(N) (Zurada,
1997). In the extended version to the complex domain, the probliem should be raised to
serve as a coding-decoding problem for the CNN’s. The problem in the generalized form
reads mapping the matrix with diagonal entries (1+i) to itself and CNN trained to capture
this. The number of hidden layer neurons was chosen to be two as the input-output matrix

was of order 16x16.

54

Table 3.8 Norm computation for the Complex 3-Parity Problem. (a) and (b) depict respectively how the
norms between (c29c3) and cl and (c2oc3) and clo(c20c3) vary with vector index. (c) and (d)
are the corresponding plots for the second composition sequence. The titles of each plot

describe how they are computed.

(2)

Norm belween (€233} and ¢t

18
16
14
12
" os
UG
ot
02
0
’ e v
(b) N Norm betwean (cZa<3) anz $to(c20c3) (d) . Nater: between (ctacd) and ¢ *ue2)oc3
2 ™ 2
\alijlﬁlf 1:{.{
15 {on .
i P fl it
tep | il i ted
C L)
N:u ’ | “ ‘ AL
Y AR
oo L] LT
.“s[; !l'1 | m
0s Vi
i Llj i
i [
o 10 F EY
vecize
Error Graph of Celiz: Prablemn
07+))
]
!
g5+
05 4
=04
4
iy
03
0z
° 0
\-T"“’-v— " -
500 3000 3500 4000 4500

Fig. 3.2 Error plotted against number of iterations while

training a CNN for CoDec Problem

wh
N

Table 3.9 CoDec Problem using EF based ANN and CNN

Average Result with Real and Complex Error Functions (16-4-16 Architecture). Learning Rate was 0 | Targcx §
Error was 0.0001 o
Error Function Real EF, Epochs Complex EF Epochs
Absolute Error 23500 T TR0
Andrew Error 17000 22000
Cauchy Error 3500 7T o0
Error Fourth Order 12200 8600
Fair Erfor 5000 T oo T
Geman-McClure Error 2500) 4000 ’
Huber Error 1700 TTTTRIOYTTT
Hyperbolic Squared 21000 17000 o 4
Bipolar Hyperbolic 30000 Tieoo0 T
LogCosh Error 1900 ‘ 77000 .
Logarithmic Error 12500 S 1%00
Mean Median Error 2000 7T 7T o0 i
Minkowski Error 10000 5000 B
Quadratic Error 1700 : 3500 :
Sinh Error 1600 i 20000 0 T
Tukey Error 10077 o PLT R
Welsch Error 20000 Booo T

3.5.4 The Sin(x)Sin(y) Problem

In general researchers have worked with several function-mapping and approximation
problems to test the Neural Networks™ learning capabilities and the efficiency of their
training algorithms. A most frequently used problem is capturing the surface governed by

the equation
z = sin(x) sin(y) . _ (3.38)

using Neural Networks. The surface is periodic as it is made up of functions that repeat at
regular intervals. The mapping becomes more complex as the norm of the input vector
grows (Dagli, 1994). The following explanation shows why approximating the surface

for large values of the input vector makes the training process more complicated.
To approximate the sine curve. in the vicinity of the origin a single term in the Taylor
series expansion suffices. The following sandwich inequality that connects the sine. the

linear and the tangent functions in an inequality is an extension of the fact just stated.

sin(x) < x < tan(x) ‘ (3.39)

56

As the argument to the sine function increases, more terms in the Taylor expansion need
be considered. The Taylor expansion approximates the sine function in the manner shown

in the diagram as the number of terms considered in the expansion are increased.

. x3 AS 7 9
sin(x)=x-=—+> X X _
A s 7o

The sine function is bounded and the approximation given by Taylor series is valid over
the whole real line. It must be noted that the Taylor expansion is an infinite polynomial
that approximates the function over the whole line (a finite polynomial would go
unbounded over the real line but the sine function is bounded over the line). A sufficient
number of terms of the expansion must be considered for approximating the function for

large input arguments. The sine function is bounded over the whole real line and hence

Table 3.10 Result showing the number of epochs required for capturing z=sin(x)sin(y). A target error
of 0.0001 was set with a 1-3-1 architecture. Result was averaced across three runs.

Average Result with Real and Complex Error Functions (1-3-1 Architecture)
Surface in [0, /2] Surface in [().27]

Error Function Real Complex Real Complex
Absolute Error 1500 1000 2500 6200
Andrew Error 6500 8000 9000 11000
Cauchy Error 1100 900 2000 4000
Error Fourth Order 1200 1500 3000 5500
Fair Error 1400 2000 2500 5000
Geman-McClure Error 1550 2500 4000 3500
Huber Error 1400 1100 2500 3000
Hyperbolic Squared 1600 1900 6000 13000
Bipolar Hyperbolic 1550 2200 5500 15000
LogCosh Error 1100 1600 3000 3000
Logarithmic Error 3550 5200 8000 11000
Mean Median Error 1450 1100 2500 4500
Minkowski Error 1300 900 4500 6000
Quadratic Error 1200 900 2500 3500
Sinh Error 1550 1000 3500 5000
Tukey Error 1450 2200 4000 7000
Welsch Error 1500 2000 4000 6000

truncating the Taylor Series to finitely many terms would imply that the approximation is
valid over a finite length on either sides of the axis of abscissa and invalid outside the
range for the expression starts to rise and go unbounded. The approximation by the

Neural Network is restricted to the region in which the problem is considered. as beyond

57
this the polynomial is invalid because it doesn’t approximate the sine function anymore

(and goes unbounded).

As the surface in question is made up of two sine functions, two such approximations of
the polynomial must be considered for each of the sine functions that makes up the

equation. For approximating the surface in the interval[0,27], the series should be

expanded up to the ninth term (by actually expanding and comparing terms). The surface
has an x-series and a y-series each considered up to the ninth term (assuming that the

region of interest on the xy-plane is [0,27]x[0,27]) thus making a polynomial surface of

order eighteen, rendering the training process complicated. If the region of interest
extends beyond the interval, more terms of the Taylor expansion need be considered to
approximate the sine function and hence the problem’s complexity increases. It follows
from the explanation that as the norm of the input vector grows, the problem becomes
more complex. The surface to be trained as the input vector grows is shown in the
following diagrams for different input norms. The above reason extends to the complex
variable based networks as well. The series expansion of the sine function for complex
inputs is given by the Taylor expansion of sine for complex arguments
v s VR \3

z z 2 g

sin(z) =z~ -+ =g T | (3.41)
. 35t 7 9

The argument for the real function extends to the complex sine function also. The number
of terms required for approximating the function increases as the norm of the input vector

grows (now in the complex domain) and hence for the complex function
w =sin(z,)sin(z,) (3.42)

with two complex input arguments, the order of the approximating polynomial increases
as the norm of the vector grows making the approximation scheme complicated for large
norms of the argument. The analysis reveals that the constraint about the complexity of

training that existed with real-variable based network for large norms of the input extends

even to the complex domain.

58

Table 3.11 CNN Mapping.the sin(x)sin(y) surface in [O,Pi/z]. CNN outperformed ANN in this range of
thg map. Architecture was 1-5-1, Learning rate was 0.1. The dots are the network outputs,
grid lines are the map of the surface from the function.

Absolute Eror

Andrew Eror

waueny g

Fan Errgr Fuunh Fower Exue

T

- e

*5:‘?%;5‘;;»

PR GBI
SN

=
Py
e

o0
RO

Fancan MaClus Eeree Huber Enat

Table 3.11 Continued

Hyperbohc Enor

Logaathane Ener

Lag Cosh Enor

e,

Mean-Median Errge

NI e et
AN PSS INS L R
D N Y
ARSI
X AN
0 <5_..,~<"$"1)1 e

~ SRt
65 \%:1&».—?;

Murinovsh: Erct

Sinh Ercor

Table 3.11 Continued

60

Walseh Ercar
et S

Table 3.12 Real EF based ANNs mapping the sin(x)sin(y) surface using a 1-5-1 architecture. in the range [0.2¥Pi] where
ANN performed better than CNN. Dots are the network outputs, grid lines show the surface map from the
function.

Absciute Ermar Angraws Fase

P Foura

Feiuftn Pymar Eve

Table 3.12 Continued

61

Geman MeCiure Erroe

Hyperote Enar

Lomanbars

Log Coen Ereat

Maana Mad:a

Mnkgwake Eorge

G e

Table 3.12 Continued

Sinh Enor

Tubey Enor

Co AN * A
s (e . R T .

kY

Watseh Erre

To study the complex input-output map. the extended version should be modeled to
include the above-mentioned constraint. Moreover, the problem of normalization is
pronounced in the complex domain. Owing to these constraints, the map was normalized
with absolute value lying in the interval [0,1], taking care to see that the input always lay
in the effective region of all activation functions. The constraint must be respected
because the comparison scheme can be effective only when the constraints are efficiently
met with for otherwise, a certain algorithm might produce inferior results owing to the
improper development of the data set than the actual convergence characteristic of the
algorithm. It must be observed that the arguments to the extended version of the surface
map are both complex-valued. To interpret the surface, one requires two different
complex planes, one for each argument. The first argument is interpreted to lie on the
first complex plane and the second argument on the second plane. The image of the
function as computed by the definition is interprete_d to lie on a third complex-plane. No
graphical description can exist for the present map for it’s a function in four independent
real variables and two dependent real variables. In the present problem, the first variable
was chosen to lie on a circle in the first complex-plane (represented by the variable z, in
the equation (3.43)) and the second variable also on a circle in the second complex-planc

(represented by the variable z,) each curve normalized to suit to the constraints imposed

63
by all the EF based ‘algorithms. It must be observed here that unlike the real case where a
whole region on the plane was mapped according to the function and shown plotted (in
three-dimensional space), the complex-variable problem shows the mapping between
curves chosen on the two planes and the output of the function, interpreted to lie on the

third plane. The plots shown depict how the CNN captures the mapping on the output

plane.

To see the complexity of the approximation as the number of terms in the series increase,
the real and imaginary parts of the surface are displayed separately in a sequence. The

real part of the following term is

(G4 iy) = EED))><<1+ 1) - (11—1“3—1—&

1 l’2 1 1
(x—6x +2.ny[x1 6 +2x]y1)

1 1
[y-;\ y+—)(y]——x] y]+6y])

)

(3.43)
and the imaginary part is
1 J o W |
[y—ixzy+-é}"j(x1--6-x1°+—2-x]ylzj
15 1 zj(1 =
+lx—=x"+=-xy ||yl —zxI"yl+-yl
[6" 2 2 6 (3.44)

The real and imaginary parts of the expression when the number of the terms in the series

is three is

—_— e J— —— —] - -x] - x] yl
(x 6x +21y +120x 12xy+24xy x 6Y +2xy

fy—=xtyp+- —xty- 11— [yl + -yl
(y X YE Y ATV, y+1,o YE=— xmyit Y (3.45)

1 5 3 ! 4
. — —x/ yl
+170x1 12x] yi? +24\ y

The imaginary part of the expression is

64

1, 1, 1, 1 1 l. 1
_ - o — 2.3 5 _toga ! 2
(y 2xy 6y 24xy 12xy+120yj(x1 6x1 +2x1y1)
1 1 1 1 1 1
+lx——x + xS — 3y - =xl? —yl3
(5XY 120 % XY +24xy)(y] 2x1 y1+6y1)(346)

1 |
+=xl*yl ~ —xI?yI3 4 — I
Y RCERRTT R

To see how the series approximates progressively, the real and imaginary parts the Taylor

polynomial are shown separately with plots as approximating the sin(x)sin(y) surface.

The image of the map w = sin(z) as approximated by the Taylor series is displayed in the

following graphs. The Taylor Series approximation to this function with increasing series
terms are shown in the following sequence of figures (Table 3.13). The imaginary part of
the Taylor series approximates the imaginary part of the function according to the

sequence of diagrams shown there.

(2) (b)

Fig.3.3 Plots (a) and (b) are respectively, the real and imaginary parts of the complex map w=sin(z).
The plots show how Taylor series approximates sin(z;)sin(z,). This is to show that as the
argument increases, the order of polynomial causes the function to be more complex
rendering the training process difficult.

---= sspprvannaung SIN(Z) usin
Part of sin(z) as the num
imaginary part of the func

g Taylor Series. The figures (a)-(f) show the convergence of the Real
ber of terms of the series increase while figures (g)-(1) show‘howathe
tion approximates. These plots throw light on how the complexity of the

w=sin(z1)sin(z2) map varies as the number of terms of approximation vary.

(a

(b)

(©)

(d)

a0

(e)

63

(g

SRS
e

o S S L s
R SO IR IS oe Pt

G S S I S R o

R o I e

% SRS
ey Ce o RSt
R IR S350 A 0
S e oo e R SRt S
\‘irt‘q'«v;v:? SRR

(h)

o
oo
S esevass:
O g Ty
5
oXot) ":'*t

Table 3.13 Continued

66

REBoNB

(k))

Table 3.14 Mapping w=sin(z1)sin(z2) using EF based ANN and CNN

Learning Rate was 0.1. Target Error was 0.0001 |
Error Function Real EF, Epochs Complex EF Epochs
(architecture: 4-5-2) (architecture: 2-5-1)
Absolute Error 250 150 i
Andrew Error 1500 2000
‘ Cauchy Error 250 700
! Error Fourth Order 3000 2800
Fair Error 300 800
. Geman-McClure Error 500 500
Huber Error 250 150
Hyperbolic Squared 3000 2500 l
Bipolar Hyperbolic 3000 2700
T LogCosh Error 2000 1000 i
" Logarithmic Error 3000 TTTiooe T
Mean Median Error 400 200 -
Minkowski Error 3000 3000
o Quadratic ErrorM;' 250 150 B)
" Sinh Eror 7250 400
Tukey Error 2000 1500
“TT"Welsch Error | 1900 2400

The complex mapping problem considered here is depicted in Fig. 3.4. The first complex

number z, and the second z, are respectively the circles constructed by assigning

67

The circles chosen for 21 and 22 for the map w=sin(21)sin(22)

Outpt of W= sini2thsin(22) for the Chasen 3% and 1) tncles

018}eee-

L i U—
¢ [EA 93 a1 ne 92 U

(a) (b)
Fig. 3.4 (a) shows the input circles and (b) shows the image of the
w=sin(z1)sin(z2) map. All are normalized to within the
unit square. This is the data set for sin(z,)sin(z,) map.

complex constants to the equation

f =c, exp(ik) +c, (3.47)

Specifically, the constants (c,,c,,k) for the two input circles (Fig. 3.4(a) were:

(0.1,0.6(1+1),1) and (0.1,0.85(1+i),-1). EF based ANN and CNN have been used to solve
the mapping problem. The real networks and the complex networks have been set to a
learning rate of 0.1 with five neurons chosen in the hidden layer. The target error was set
to 0.0001 and the average epochs to convergence are displayed in Table 3.14. The
simulation of the network with points other than the ones chosen for training are

displayed in Table 3.15.

Table 3.15 Mapping w = sin(z1)sin(z2) using EF based CNNs. The Learn rate was
0.1, architecture was 1-3-1. Fig. 3.4(b) is mapped by the trained
networks in this table. Dots are the network outputs

Absalute Ervor Andrew Enut
0202 Ja?

3138

31%

1194

3192
38
v ¥ e
hAL:)

1184

a4 Tz

Table 3.15 Continued

68

0202 e -

Cauchy Evnar

R .
02 22
[
0198 018 / S,
0.19% 01%
0194
0194
0192
192 -’
013 PXs) Pt
e
o LRL] o
0188 116
nne o84 4
0184 & S8 the o1 2y oz
I e e
Fav Error 5
P F 0 Foutt Srder Enar o _
02 2
- 1 2 B
i
0.1%8 P 1 01% J
0,196 01%
0.194 0194
0.192 0192
019 019
0188 9 0188
0186 q 018
0.184 4 0184
0182 . . " .
002 004 008 008 01 012 o 004 (53 T. CR s Ui
Geman MeClure Enor ~Huber Enot
0202 0w e ey e
o2 3 22]
0158 - 1% 4
0198 - 3%
0134 - 30
0192 .
]
018 -
69
0138 -
18
0 teg =
21%
0184
bR 1
N .
O 60 o6 oee Xl FEE - L)
00z 003 004 00> U3 DO7 DOB 503 01 D1 DA
Hyperbolic Error Loganthas Eren
0.202 0 22 g - s e w4 = . . .
0.2 u2
18 Q198
U196 0156
0184 9194
0182 a1s J
018F 018
0.1es 7188
0.186 C 16
0184 I

any ana 37

SOonrY OnROA Qtn Nt Aty ol

Table 3.15 Continued

69

LogCosh Erros
0202 g ' o Mean-Median Error
0.2
R, 1 02 4
o108 P e —
£ 0198 P ~
0.196 p
01% ~
0194 | Va
0194 /
0192 .
b 0192 rd
019
019 !"l o
0188 .
018 " 4
0186 r,.—-’"’
0186 ’__,.»"’ J
0184 018 X -
0163 . n . . .
.02 004 01 "
008 08 ot 012 014 e 503 oor 0or 08 00 o 9% or T 5w
02 Minkowski Error
02t] 0202 Quadranc Frro
0.198 oz
0.19 o1e8
0.184 0198
0.192 1 0194
0.19 0182
0.188 a1
0188 0188
0.184 kg 1
|
0 ‘SE A 0184 1
02 D04 006 008 01 0.12 T4
0183 S PO |
02 003 004 005 006 007 008 009 D3 0 &2
Sinh i
o2 e oos ML ToerBeer)
02 - n2 4
; |
0.198 - 01gs 4
0186 ra 01% & i
a o {
0.184 - 019 .-‘4‘ Jk
/
0192 ,,-" v 0.192 ’/‘f 4
14 pr |
018 7 _}./._,9-»"’ 019 / {
e J
o188 4 .,}-;.'-y i 0188 7 4
o 0186 Lt .
\ ot P !
0.184 O - 0184 o N
0 153 — . " " " 3182 - -
02 003 004 OCE U0 007 008 DO3 G631 011 012 602 003 004 D0 006 007 O08 Ow@ 01 01 L
P Welsch Etrar
2
02 [——
"
0.198 ‘.
0.1% '.,r'
0194} :,J
0.192 K
7
019 F
vl e
i e
0166 o -
i L
0184 R
1
01 004 TU6 Uos Ul o1z e

It can be seen from Table 3.10 that the complex valued networks perform better than the
real valued networks with the surface map. z=sin(x)sin(y) when the argument of the

function is in the range [0,7/2]. The real valued nets perform better when the argument

70
of the function is in the range [0,272'] - In the extension to the complex domain of the same
problem, where the arguments were chosen complex and the function extended to the
complex domain as in eqn. (3.42), both real and complex networks captured the mapping
but the differential rates at which each EF based network learned to map is summarized

in Table 3.14 where the average epochs over three iterations are presented. As can be

observed the EF based CNNs performed better than the EF based ANNs,

3.5.5 The Two-Spirals Problem

The Two-Spiral problem was posed by Wieland of the MITRE Corporation (Lang and
Witbrock, 1988). This problem demands the design of a Neural Network that performs
classification in a highly non-linear region. Two interlocking spirals each spanning 6z
radians were sampled at 194 points. The task for the Neural Network is to map points on
the different spirals to two different outputs and points in the vicinity of the spirals (and
belonging to the interlocked space) to a correct class as belonging to the spiral in
question. This was pronounced Benchmark because it was found to be an extremely hard
problem for the algorithms of the BPA family to solve (Dagli, 1994). The following
description gives a reason why the two intertwined spirals are a difficult mapping

problem. The Archimedean Spirals are given by the polar equation
r=0 (3.38)

where r is the radius vector and @ is the polar angle. On re-writing in the Cartesian

coordinates and adding the parameter to specify the initial angle of rise ¢ of the spiral, the

equation takes the form

x=6cos(6 +¢) (3.39)
y=0sin(@+¢)

Depending on the value assigned to the parameter ¢, the spiral takes off from the origin
making aﬁ initial angle of ¢ with the initial line on the polar plane. In the actual
“statement of the problem, the two spirals were chosen to be 7z radians apart. As the
Neural Networks perform continuous mapping, the points in the vicinity of the spirals

should also get correctly identified as ones lying close to the spiral in question. As a

consequence, the region that the Neural Network should correctly identify is highly non-

71

linear as it closely follows the spirals. Fig. 3.5 shows a plot of the two interconnected
linear spirals portraying the non-linear nature of the problem. A radial line drawn pierces
the spirals alternately and hence for a fixed angle of the line in question, there are
alternating patches of regions that belong to the spirals requiring the network to map
them into different classes. As the angle of the radial line changes, the regions shift
(according to the geometry of the spirals) along the line again requiring the map to be
performed in an alternating fashion as belonging to the first or second spirals. This
shifting-alternating nature of the problem requiring the map to be preserved makes it non-
linear. The seventeen real EF based real valued networks solved the problem with both
architectures at varying rates as shown in the table. The epochs were averaged out for
three runs of the algorithm maintaining the initial weights identical in each run with the
different EF based BPA. The target error was set to 0.0001. The standard BPA was used
with the problem.

Two-Spirals Problern
20 T - - r r T —

15 /_.‘_._‘\
/‘ <0 W
10 A o e N ° RS
//' / . * \\ " \
s LATLE e NI
5= A el J . '\\ \
7\ AR CPR \
i] ; /‘2} . ! ‘l
[] i -
I\ . 1\ L, v s }
5 o . N Ceene” ',/ . /J
- T oy IR Y
-15 ¥ ‘
« TRV
2020 15 10 5 [‘J 5 10 15 20

Fig. 3.5 The Problems of Two-Spirals requires telling apart the dotted spiral with
the one shown in dots and dashes using a Back-Propagation trained Neural

Networks

The runs were made with normalized data by dividing the inputs with the norm of the
farthest point on the spirals and later shifting the spirals onto the unit square in the first
quadrant of the xy — plane. The activation functions employed were bipolar sigmoid.
However, with architectures 1-5-1 and 1-10-1, the CVBP produced saturation at 0.2 with
Quadratic Error Function. The activation employed here was the Nitta function (eqn.
(4.14)). With other EF like Cauchy, Mean-Median, Absolute, Fourth Power and Huber.
the CVBP based training showed saturation for large values of epochs while with the rest

of the EF’s, the training was erratic. A typical convergence pattern with the real BPA is

Error Plot for 2-Sprrals Training

o
0

lterations
o o a (=]
& o R @

o

o
5

A

0 500 1000 1500 2000 2500 300G 3500 400 4500
S

0

Fig. 3.6 Error convergence characteristic with the two spirals problem
withreal EF based BPA

displayed in Fig. 3.5 The test data consisted of points randomly picked from the
segments of the spirals between the training points and also points in the vicinity of the
spirals in the interlocked space between the spirals. A hundred test points were chosen
and simulated with the networks designed. The table shows a perfect classification result
with the real valued ANN’s. The outputs set were (-0.5,0), (0.5,0) and accordingly the
network’s output maps to points in a close vicinity of these points. A second architecture
(1-10-1) was also used with the problem to verify how the performance varied if the same

were changed, as the CNN produced saturation with all the trials.

Table 3.16 The simulation result with real EF based BPA addressing the Two-Spirals problem is shown
in the table. The architecture was 1-5-1. Learning rate was 0.1. The two targets are (-0.5,0) and
(0.5,0). The point cluster around these points show that each EF based network correctly
classified the test-data points constructed from intermediate points on spirals (bypassing the
training points) and also points in a close vicinity of the spirals belonging in the inter-locking
space.

Absolute Errer
T

i HE |
" w8 DE L4 02 U L2 04 UE DB

Table 3.16 Continued

1

EECTRS N

3
R
i
Fipualan g erbun Fre i
us : -y - R |
! : ' :
ua -
B !
03 |
i
[- H
ut i - ; i
0 e [. |
| H : . :
at P H : B . i
! i H s i
0z i H 0ot {
03 i i 4 . H .
: : 1
ua ¢ ' : - |
: H { H H
; : ! : !
s T i ! H i 1 R i X |
1 08 06 04 02 Q a2 04 a8 Q8 DL F T nEor ; !
- !
!
!
|
LEFL I ‘

Geman McClure Error

Huber Sy

-

08

a6

04

-

Table 3.16 Cortinued

74

=uganthime Eror

- ttecian S

I .
Tl -
23
<2
] EE— :
42 =
3 -
4 -
H
!
ns q
Bl e U - '
Minkuwski Ertar
Wb e g R, R
i

T

us

Welsch Error

T

- —~s~ vor s vomparing the performances of BPA and CVBP for Two-Spirals »

Problem._ The average epochs for convergence are shown for the
BPA vs{hile the average saturation value and the average epochs for
saturation are tabulated for the CVBP. Learning rate was 0.1.

Average Result with Real and Complex Error Functions (1-5-1 Architecture) i
Error Function Real EF, Epochs | Complex EF Saturation, Epochs
Target error: 0.0001
Absolute Error 1500 L 0333610500
Andrew Error 8700 : T T23467.25000
Cauchy Error 1500 03231.7500
Error Fourth Order 1700 77T (03489, 8500 o
Fair Error 1000 i 13425711000
[Geman-McClure Error 6600 45149,75000
I Huber Error 900 029367500 !
Hyperbolic Squared 4200 T 13217, 14500
Bipolar Hyperbolic 7000 ? 1.6630. 16000 !
LogCosh Error 35000 77T 0432810000
Logarithmic Error | 8700 B 72341501 1
“Mean Median Error 1500 - -
Minkowski Error 1900 :
Quadratic Error 1000 : 0.2183, 8500 |
Sinh Error 3300 0.4338. 8000 ’
Tukey Error 42000 7 135717100000
Welsch Error 5200 2.3141.12000
. Average Result with Real and Complex Error Functions (1-10-1 Architecture)
Error Function Real EF, Epochs_“ MCTd‘rﬁv]E&"EE Eﬁaafsm ’
" Absolute Error 1900 0533612000~ 7
© AndrewEror ;87000 T 35367.21000°
Cauchy Error | 1200 03T 7000 T T
Error Fourth Order | 2200 7 T 06181.8700
! Fair Error A00] el 21563.9500
thman-McClure Error 7000 3015413500
; Huber Error “OF 400 0.1587.8000 |
i Hyperbolic Squared 6300 2.0121. 11000 ;
‘ Bipolar Hyperbolic 7000 2.1112. 16500 E
LogCosh Error 2600 05227.9500
Logarithmic Error 7700 7T 2331515500 k
! Mean Median Error 1925 70.2480. 6500
Minkowski Error 2200 0.6222.7500
T OuadraticEror T TTTTTTO000 T 0.2326.8000
Sinh Error 3500 T332 7000 T T
Tukey Error 3100 T 7798339000
Welsch Error | 6300 ’ 3.3849. 10000

The table shows the performance of 1-5-1 and 1-10-1 architectures. The real EF based
networks captured the Two-Spirals mapping. The performance of the CVBP is tabulated
for two architectures. As can be observed. the size of the architecture did not matter as

far as the performance of the network was concerned. The EF based CNN's produced a

saturation while ANN’s learned to capture the mapping.

76

3.7 Conclusion

e The study reveals that the EF can indeed be treated as a parameter while
employing ANN or CNN for training data. The various Benchmarks addressed in
the chapter show that the Huber Error Function consistently worked well with
most problems with both ANN and CNN.

e The other EF’s that performed well and can replace the Quadratic Function
depending on the application or requirement are: Absolute Error, Cauchy, Fair.

Mean-Medain Error, Fair Error, Fourth Order and Log-Cosh EFs.

e The Sine Error Function is characterized by many maxima and minima and hence
shall be useful only when the data set at hand is normalized to a region very close
to one of the minima points of the sine curve. It can be seen that this EF based
network needed more training runs as the algorithm requires the first few epochs
to season the update process and reach to a stage that would ensure a decrease in
the error on further training. This is equivalent to stating that the weights reached
a point that would localize the training scheme on one of the troughs of the
sinusoidal curve, which on further training results in a decrease of the sinusoidal

error.

¢ The Geman-McClure Error, on the other hand, flattens out for larger values of the
argument resulting in lower slope and lower updates and increased epochs for the
complete training. The number of epochs to training depends basically on the
effective slope zone of the Geman-McClure EF, which clearly would render a
non-trivial update but once the argument doesn’t fall in the flattened part of the
EF. the values by which the weights update would be low. One can conclude from
these analyses that the Andrew EF, Geman-McClure EF, Tukey and Welsch EFs
shall need a prior analysis to fix up the initial weights so that the training could be

effectively made.

With an arbitrary initial condition, the EFs consume some initial epochs of training to
season the network down to a training course after which the training is more efficient.
Some initial epochs are spent to steady the network so that the weights are brought to a

point from where the training becomes efficient. This argument holds for both real and

77

complex valued EF’s. Minkowski Error performs like the Fourth Power Error when the
order is set to four. EFs like Logarithmic, Bipolar Hyperbolic and Hyperbolic Functions
need normalization as their domains are defined only on a subset of the Real line. Hence
in conclusion, Huber Function is recommended for completely replacing the Quadratic
EF. In fact with a proper choice of the parameter ¢ the function can outperform the QEF

as it has the nice features of both QEF and the Absolute EF.

Chapter 4

Investigation of Activation Functions

L e ——.

The present chapter surveys the CAF proposed in literature. EF based CNNs are applied
to the Benchmark Problems stated in Chapter 3. Based on the survey of the CAFs, a new
CAF is proposed.

4.1 The Complex Activation Function

The function of activation in the neuron of the CNN is a complex valued function unlike
the ANN where the functions were real valued. The sigmoid function is among the most
frequently employed real valued activation functions. It was possible in the real variable
case to tailor activation functions by choosing pieces of smaller curves and joining them
at the end points (and establishing the continuity at these points) to obtain curves
resembling the sigmoid that performed satisfactorily with training schemes. For instance,
among the tailored activation functions is the construct obtained by the join of two
straight lines with a stretched and shrunk sine curve. The curve constructed this way
resembles the sigmoid; this was found to perform satisfactorily in many practical
applications. It can be easily observed that this function satisfies the general set of
conditions enumerated (Hassoun, 1995) for testing if a function could be used as function

of activation.

It must be noted that such a construction is not possible in the complex valued setting.
Equivalently complex activation functions can not be tailored as easily as the real
activation functions could be. A first reason for the impediment is the complex activation
involves a study of three-dimensional surfaces (as will be elaborated upon), the
analyticity of which plays a vital role of course. The presence of singularities is a second
important factor. These amounts to saying that the pieces of surfaces that are sewn must

be made sure to have their individual parts aligned so as to clear analyticity condition at

79

each point along the seam so that the slopes match accordingly. As an example, to

substantiate the paramount importance singularities can assume, the Haykin activation

function given by

1
(1+exp(-2)) 4.1

never converged in any of the experiments conducted by the author (incidentally, the
same observation was reported by Nitta (1997)). A study into the behavior revealed that
the presence of singularities greatly influenced the convergence. This function of
activation has countably infinite singularities on the axis of ordinates (will be elaborated
in a later section of this chapter). On the other hand, the complex plane imposes its own
constraint in the form of Liouville Theorem which states that if a complex valued
function is both analytic and bounded, it must be a constant function. As a ramification of

the theorem, the constraints emerge.

To substantiate, on opening up a Neural Network shown with two neurons in the input
layer, three in the hidden layer and one in the output layer (referred to as the 2-3-1
architecture), we get the following expression (assuming the output to be y, and
activation functions in the three hidden neurons to be f}, f2, f3 and the activation in the

output neuron to be g)

3 2
y=8(Ewfi(E wyx; +5)) 4.2)
= J=

For the particular case of real sigmoid activation function in the hidden layer we get

1) (4.3)
1+exp(—% wyx; +b;)
j=1

3
y=g(Zw;

i=1

where w; and v; are respectively the input to hidden and hidden to output layer weights

and b's are biases.

80

. If the networks were assumed complex, the Nitta activation function can be placed inside

the second layer of the network defined in eqn. (4.2) above

1 o1
z) = +i
S l+e™ 1+e”

The CVBP put forth by Leung and Haykin (1991) uses an activation function of the type

1
(1+exp(=2))

which is a straight forward extension of the sigmoidal function to the complex variable

setting with steepness factor taken unity.
The weight update rule for the complex-variable based Neural Networks is

W

+1 = Wy +AW" (44>
where each weight is complex valued, which can be written as

Re[w,.] = Re[w,]+ Re[Aw,]

(4.5)
Im[w,] = Im[w,]+ Im[Aw),]

The Leaming Convergence Theorem for complex valued Neural Networks (Nitta, 1997)

gives a way of updating the weights using the formulae (4.7)

Re[Aw,] = —eAVRr(2(Wps X%y)s V)
Im[Aw,] = —eAV™r(2(W,, %,), V)

(4.6)

where 4 is any positive definite matrix (that is all the eigenvalues of 4 are positive real

numbers, Hoffman and Kunze (1971)) and ¢ is a small positive constant called learning

81

constant, VX is the gradient with respect to the real part of w (the weight) and V™ is
the derivative with respect to the imaginary part of w. Let P(x,y) be the unknown joint
probability of two complex valued patterns x and y occurring from two different sources.
The set {(x,y)} corresponds to the learning pattern in Neural Networks. The purpose of
learning is to estimate a complex valued pattern y that occurs from the second
information source given that a complex valued pattern x occurred from the first
information source. If z(w,x) is a complex function giving an estimate of y where w is a
parameter that corresponds to _weights and thresholds in a neural network, z(w,x) would
then correspond to actual output pattern of the neural network (Nitta, 1997). Let » be the
error function which represents an error that occurs when we give an estimate for the true

complex-valued pattern y (r is a non-negative real function and not a complex function).

The average error R(w) defined by

R(w) =3 > r(z(w,x),y)P(x,y) (4.7)
x y i

is what is minimized in order to train the CNN. The Learning Convergence Theorem for
the complex variables is an extension of the result of Amari (1967) where the result for

the update rule in the real domain was reported.

The choice of activation function is extremely crucial for a complex variable based back-
propagation élgon’thm for two reasons. First, the activation function in question is a two
variable function (function of x and y), hence a surface in the three-dimensional space
and therefore, the convergence study unlike the real variable based networks is more
involved. Secondly the properties of the complex plane are different from those of the
real line with additional constraints imposed by the properties of the complex plane. As
the performance given by a Neural Network depends to a great extent on its activation
function (as the approximation offered by a ANN or CNN is in terms of the
corresponding activation function), a study of complex functions and their derivatives
(because the weight update rule in eqns. (7), (8) involve computation of the derivatives)

is important for its proper choice.

82

4.2 Study of Complex Activation Functions

The Complex Activation Functions with the complex weights as coefficients do the
approximation of the data at hand. The Liouville Theorem constraint the complex plane

imposes is studied here and the CAFs already proposed are surveyed.

4.2.1 Liouville Theorem

The complex plane unlike the real line is a two dimensional space. The second dimension
adds flexibility and at the same time restricts the choice of activation functions for Neural
Network applications by imposing certain constraints. More precisely, the important
constraint imposed by the complex plane is epitomized in the Liouville Theorem which
states that 'If a complex valued function is both analytic and bounded through out the
complex plane, then it must be a constant function.' Hence, for a non-trivial complex-
valued function, analyticity and boundedness cannot hold together. The contra-positive of
the theorem puts it in the most usable form as it lists conditions that serve as search tools
when one embarks on a search for complex activation functions. It states that a non-
constant complex valued function is either non-analytic and bounded or is analytic and
unbounded or non-analytic and unbounded. The three possibilities must be verified, as
the new complex activation must clear this constraint. It hence follows that at least one of
the above three conditions must be satisfied for otherwise the activation would turn out
trivial (the constant complex function). Equivalently, if a non-trivial complex valued
function is analytic it must go unbounded at at least one point on the complex plane and
if the function is bounded it must be non-analytic in some region for it to qualify as
activation function. Hence a search for activation function should make sure these
conditions are satisfied. The second dimension of the complex plane necessitates a study
of three-dimensional surfaces, as the real and imaginary parts of the complex activation

functions are both functions of x and y.
4.2.2 Complex Activation Functions and their Derivatives

The CAFs already used in literature are listed here and their derivatives studied.

83

4.2.2.1 Nitta Activation Function and its Derivatives

The Nitta Activation is defined by the following equation

_ 1 . 1
T = rowcn T (renmy))

(4.8)

As the real part of the Nitta activation is independent of y and the imaginary part is
independent of x, the derivative of the Nitta Activation with respect to the real part of the

argument, x is

exp(—x)
1+ exp(—)c))2

(4.9)
in which the imaginary part doesn’t appear, consequently the imaginary part of the

derivative is zero. The derivative of the Nitta function with respect to the imaginary part,

yis

jPCY) (4.10)
(1+ exp(-y))*

in which the real part doesn’t appear.

It can be easily seen that the function doesn’t have any singular points, nor do the
derivatives possess any (as exponential function is always positive). The characteristic of
the function is the imaginary and real parts of the weights are separate and appear in the
real and imaginary parts of the function separately. The surface plots of the real and

imaginary parts of the function and its derivatives are shown.

84

RRRINENY TOINR TR AR

®)

TURUHENEN SHIUH SNRRRG PR AR

(d)

(©)

Fig. 4.1 (a) Real Part of Nitta Activation, (b) Imaginary part of Nitta Activation (c) Real part of the

derivative with respect to x (d) Imaginary part of the derivative with respect to y.

4.2.2.2 Haykin Activation Function

The Haykin Activation function is defined by the following equation

(4.11)

z))
x + iy . On breaking the function up into its real and imaginary parts, the RHS

(1+exp(—

1)

with z

takes the following form

85

N - - /0\
WRENEN IR R TR AR

(®)

(2)

e NS x o Q\
TRRRURRR A UHERNE SNPRRQR IR AR

(@

(c)

Qe N® x o Q\
RURRRRIENY IR SRRRRQD TR heefrum

LS DN G
RO SERRITEY IR BNRNRQID TR AR

®

Fig. 4.2 (a) Real part of Haykin activation (b) Imaginary part of Haykin activation (c) Real part of the

derivative with respect to x (d) Imaginary part of the derivative with respect to x (e) Real part of

the derivative with respect to y (f) Imagianry part of the derivative with respect to y

86

(1+ exp(—x)cos(y)) + i(exp(—x)sin(y))
(1+exp(=2x) + 2exp(—x) cos(y))

(4.12)

On differentiating the function with respect to the real and imaginary parts separately we

get respectively the following expressions
- f(2)A- f(2)) and (4.132)
~if (2)(1- f(2)) (4.13b)

On substituting the definition of the activation function and simplifying the expressions

above, we find the derivative of the activation with respect to the real part is

— (exp(—x)cos(y) + 2exp(—2x) + exp(—3x)cos(y)) + i(exp(—x) — exp(—3x))sin(y)
(14 exp(—4x) + 4exp(—2x) + 2exp(—2x) cos(2y) + 4 exp(=3x) cos(y) + 4 exp(—x) cos(y))

(4.14)

and the derivative with respect to the imaginary part is

— (exp(—x) — exp(-3x))sin(y) —i(exp(—x) cos(y) + 2 exp(~2x) + exp(—3x) cos(y)) +
(1+ exp(—4x) + 4exp(-2x) + 2exp(—2x) cos(2y) + 4exp(-3x) cos(y) + 4 exp(—x) cos(y))

(4.15)

4.2.2.3 Haykin Activation and Singularities

The position of singularities disturb the training scheme as whenever some intermediate
weights fall in the vicinity of the singular points, it was observed that the whole training
process down the line receives a jolt. This is revealed by the error plot of the function is
characterized by peaks. The typical point scatter shown in the figure is a distribution of
the hidden layer weights as the training process is on. As can be observed, they cluster
around some singular points which eventually results in the peak type error-epochs

characteristic. The typical EF graph with Haykin activation is shown in figure.

87

15 T T T T T T T 6
S IR VU SO SO S . T °f
P
d : Ar
— -
AR :
A 2
IR
i : r
10 1 H] i i i 1 0 ; .) il
-10 5 0 5 10 5 20 3 X 0 8 100 150 200 250 3 B0 40 40 50
Epochs
(a) ®)

Fig. 4.3 (a) Four singular points of the Haykin Activation Function (explicitly, (0, 7), (0,-

7), (0,37), (0,-37)) have been fully engulfed by the point scatter. The points

(0,37r) and (0,-3 77) are shown encircled while the other two points are completely

inside the cloud of points. (b) shows the peaks formed during a run of training.

The figure shows four singular points of the Haykin activation that are completely
engulfed by the cloud of points. The training process produced many peaks as a result of
the singular activation configurations encountered because of the activation function’s
singular points. The Haykin function has been employed with all the problems addressed
-in the chapter but didn’t produce a satisfactory result owing to the reason just mentioned.

On equating the denominator of eqn (4.12) to zero, one observes that the function goes

unbounded at points of the type
0,2n+)) ' (4.16)

for n a Natural number.

4.2.2.4 Georgiou Activation

The Georgiou Activation is defined by the equation

f(z) = __C_f_ 4.17)
(1+;‘Zl)

88

URRINEN TORRRA PR QRN

)

b

(

(a

FURMURRNEN TRRRRA P ATRNRA P IR AR

)

¢!

UGN RN P ARNRQAP IR A R

)

(

Fig. 4.4 (a) Real part of Georgiou activation (b) Imaginary part of Georgiou activation (c) Real

)

5

(

part of the derivative with respect to x (d) Imaginary part of the derivative with respect
to x (e) Real part of the derivative with respect to y (f) Imagianry part of the derivative

with respect to y

yi

89

The ¢ and r parameters have been set equal to unity in the study conducted in this
chapter. The derivatives of this function with respect to the real and imaginary parts of z

respectively are

(2| + y*) —ixy
|21 +]2)? (4.18)
-xy+ i(lzl + %)
(4.19)

21 +]2h?

Unlike the Haykin activation, the Georgiou activation doesn’t go unbounded in its

domain of definition (the complex plane).

4.2.2.5 The New Activation Function

The new activation function is defined by the equation

X LY
f(2)= (1+|x|)+l(1+ly!> (4.20)

The function is free from singular points as there exist no points where the function can
g0 unbounded. Moreover, the real and imaginary parts are functions of a single variable.

The derivatives of this activation with respect to the real and imaginary parts respectively

are
1
_ 1 4.21
REC 42D
g1 (4.22)
A+))?

The Activation functions surveyed have been coupled with each of the complex EFs

analyzed in the preceding chapter. The problems addressed were the ones enumerated

90 .

there, the theme of the work however was comparing the performance of Activation
functions. Table 4.1 displays the result where the number of epochs to convergence are

shown with respect to each problem, by setting the other parameters identical. The new

complex

RAR R NN RSN TR

RRAR T DA SN Reindienon

(©) @

Fig. 4.5 (a) Real part of the New Activation Function (b) Imaginary part of New Activation
Function (c) Real part of the derivative with respect to x (d) Imagianry part of the
derivative with respect to y.

Activation function proposed here can be seen to have performed better in some cases as

compared with the well-known and accepted activation functions of the CNN theory. The

91

proposed function is simpler than the Nitta function that by far produced the best result

among the complex activation functions.

4.3 Conclusion

The various EF based CNN’s have been applied to the problems addressed in Chapter 3.
The results of the runs have been displayed in Table 4.1. Comparison has been drawn
between various complex valued activation functions by subjecting the algorithm based
on each of them to a training process. The various EF have been used in the process. The
problems addressed are Complex-XOR, Complex CODEC, 3-Parity, w=sin(x)sin(y). The
learning rate was kept fixed at 0.1, each experiment was carried out thrice and the
average epochs to convergence have been tabulated by rounding them to the nearest
perfect figures. It can be observed from the table that the Huber, Cauchy, Mean-Median
functions have performed on par with the Quadratic Function. The other conclusions that
follow from the tabulated results are, the EF is indeed a factor that determines the number
of epochs to convergence and a combination EF and activation function can optimize the

training scheme substantially.

It can bé said that the EF based training scheme with a proper choice of activation
function can substantially decrease the epochs for the problem in question. The
importance of designing a learning scheme to optimize a training process for the problem
at hand immediately comes up in the light of the EF and activation functions study the
present chapter reports. To optimize a learning scheme, sticking to one EF and a single
activation may not be the best; instead choosing a set of EF and activation function
combinations to better the scheme. For instance, if the choice of Absolute Error function
with Georgiou activation is heading for a saturation, switch to a Huber function with
Nitta activation from the point forward or any other suitable combination to bypass the
same. Table 4.1 can be taken as a basis for making these choices and designing a learning
scheme. This approach will clearly offer more tooling while designing Neural Networks
as firstly, it departs from the present day technique of using the Quadratic Error Function
and an activation and invoking the procedure of weight update employing a gradient

descent, which in practice doesn’t manage to go below a certain value of the error

92

(although theory assures that an NN exists for an arbitrary error that the investigator may
desire). Secondly, the choice of EF and activation function chosen in the training

sequence circumvents some of the existing lacunae such as error getting stuck and not

progressing below a certain value.

Table 4.1 The average epochs for convergence with various activation functions based CNN, across Error Functions.
Architecture was 1-5-1, Learning Rate was 0.1, Target Error was 0.0001.

EF CXOR CODEC (0.0001) Complex 3-PARITY w=sin(x)sin(y)
NTA GOR NEW NTA GOR NEW NTA GOR NEW NTA GOR NEW
ABS 12100 12000 10000 1600 3500 3000 4500 4000 3000 6200 10000 8000
ANDREW 20300 15000 15000 | 22000 10000 8000 10000 11000 13000 11000 13000 19000
BIPHYP 12900 15000 15000 19000 9000 8000 9000 10000 10000 4000 6000 4000
CAUCHY 11000 14000 1 mooo 2000 2500 2500 3000 3000 3500 5500 6000 ' 5000
FAIR 15100 17000 19200 10000 3000 3500 4000 6000 6500 5000 9000 5000
FOURTH 15000 18000 17000 8000 4000 3500 3500 4000 3500 3500 5000 4000
GEMAN 10000 17000 20000 4000 7000 4000 6000 8000 9000 3000 10000 8500
HUBER 10000 17000 14000 1700 4000 5000 2500 2000 2000 3000 4000 5000
HYPERB 20200 19000 21000 17000 6000 7000 7000 7500 6000 15000 15000 10000
LOGTHM 12000 23000 21000 19000 11000 12000 8000 1 oooo 7000 3000 10000 7000
LOGCOSH 20000 17000 14000 7700 2500 2500 4000 4000 5000 11000 6000 5000
MNMED 12000 21000 18000 7000 4500 3000 5000 4000 4000 4500 6000 5000
MINK 12100 19000 19000 5000 5000 6000 5000 5500 4000 6000 5500 5000
QUADR 10000 17000 15000 3500 2500 2000 3000 2000 2500 3500 4000 3000
SINH 14200 19000 20000 2000 5000 5000 6000 6500 6000 5000, 5000 4000
TUKEY 18100 20000 18000 2500 6000 5000 6000 8000 9000 7000 9000 5000
WELSCH 17000 16000 14000 13000 6000 4000 7000 7000 6000 6000 8500 7000

Chapter 5

Application to Mapping Problems

e ———————————

The mapping properties of EF based CVBP are studied in the present chapter. Some well-
known maps that appear frequently in application have been considered here. The
learning constant was kept fixed so also the initial weights and the number of epochs so

that the EF’s contribution to the CNN’s performance can be compared.

5.1 Mapping Properties of Neural Networks

A function is an association that maps points in a domain to points in the range. Many
properties are associated with functional maps — continuity, differentiability and
compactness among many others. In most problems of practical interest, the actual
function that governs the input-output behavior is unknown as it becomes increasingly
difficult to treat the differential equations that govern the system as the number of
variables increase or the equation becomes highly non-linear. However, Neural Networks
can be taught to perform the mapping by treating the dynamical system as a black-box
and collecting the input and the corresponding output values and subjecting the network
to training based on these data points. It was shown recently (Amir et. al., 1997) that
initial condition is the most important factor that affects the generalization performance
of the Neural Network design, the other parameters being complexity of the network,
small and large momentum rates in that order. In practical applications hence, it is the
mapping properties of the Neural Network that are put to use. In this thesis, the validation
of the CNN against the benchmarks was shown earlier while the ability of these networks

to map the dynamics of the problems at hand is the step of practical importance.

The mapping properties of the CNN are the subject of the present chapter. In actual
application, the form of the mapping is unknown but BPA based Neural Network
captures the mapping (subject to Kolmogorov conditions (Kolmogorov, 1957)). The

Learning Convergence Theorem for complex variables (Nitta, 1997) is the assurance one

95
needs to establish complex weights exist that solve the mapping problem at hand To
reach to the point in the weights space, the process of training based on gradient descent

is employed. The method involves computing the complex gradient and updating the

weights based on the slope as obtained from the gradient formula.

The BPA based Neural Networks have been used extensively to tackle the problems
posed by the industry. On the other hand, the CNN’s mapping properties per se haven’t
been studied in literature as yet. Nitta (1997) reported some problems of mapping to
bring forth the differences between CNN and ANN where the stress was on problems that
CNN solves and ANN doesn’t. The present chapter investigates and explores the
mapping properties of the CNN. The Error Function based Networks were arranged in a
performance echelon for each problem studied. Some problems of interest that were
pointed out in literature (Nitta, 1997) were extended to include the maps of a more
general nature. In the present chapter, the number of epochs has been kept fixed for most

of the maps considered.

5.2 CNN Applied to Mapping Problems
The mapping properties of CNN are explored in the present section. Some well-known

and frequently applied transformations are captured using the CNNGs.

5.2.1 The Bilinear Transformation

The transformation affected by the formula

az+b
W=
cz+d

(5.1)

is the Bilinear Transformation that maps circles on the z-plane to circles on the w-plane.
The map can be thought of as a composition of several elementary maps as the following

step shows (Churchill and Brown, 1993),

(az+b) _a (b/a-adlc’) (5.2)
(cz+d) ¢ (z+d/c)

96

from which it is clear that for z restricted to lie on a circle, the rational function that
defines the bilinear transformation maps its image onto a circle. As the break up shown
above is a sequence of elementary maps (shifting by a constant and reciprocal maps), the
circle retains its form through the transformation as they make up the transformation shift
the circle, shrink or expand it, perform a reciprocal map and offset the resultant. These

transformations preserve the circle. It should however be noted that the determinant

. 4 (5.3)

:

should not vanish for otherwise the map collapses to one that restricts the image to lie on
a straight line passing through the origin. It can be clearly seen that the Bilinear
Transformation is a generalization of the Similarity Transformation obtained by assigning

null values to the parameters b and ¢ (eqn. 5.1).

Bilinear Transformation

1
08
06F
04

02

D Q
02

04
06

08

58 05 04 02 0 02 04 06 08 1

Fig. 5.1 Bilinear Transformation maps circles to circles.

For the present experiment, the Bilinear Transformation considered was

we (0.2z+0.2+0.37)
(i+0.4)

In real world, this mapping is used to study viscous flow across bodies with elliptic
cross-section. As Error Function based CNN leamns to capture the transformation, these

networks can be employed to perform the map the vector fields in the flow past a

cylinder.

97

The complex mapping was found to be sensitive to the normalization of the input and
output patterns. The CAF demand the data to be mapped be restricted to a range for
otherwise, the functions’ effective contribution to the weights diminishes for larger
values of the argument (as the functions become more flat for large arguments and hence
less slope). This restriction for implementing the CNN algorithms with the Bilinear
Transformation manifest in the form of a constrained range on the parameters a, b, ¢ and
d. For circles of a large radius and lying beyond the unit circle, a normalization factor
must be introduced to restrict the whole output to within the unit circle before using the
CNN with these activation functions. Architecture chosen was 1-5-1, learning rate was
0.1, epochs was 1500. The Nitta and New activation based algorithms were used to solve

the problem. The target error was set to 0.000001.

Table 5.1 Bilinear Transformation using Nitta Activation Function. 1-5-1 architecture, 1500 epochs,
Learning rate = 0.1. Epochs criterion was chosen while training.

Absolute Eror Andrew Emor

s =
-
08 - \\\ 08 ~
y N “
06 //) \ 06 \\
/ \
04 04 \
/ \ \
02 02
0 N 0
22 - 92 N] /
04 \ // FYIAN - /
/
26 \\ / LH \\ /
. s/ /
8 ~. - 28 N
\\'\ /.‘ 1 . - n
08 08 04 02 0 02 04 05 08 1

08 06 04 02 0 02 04 06 08 1

Bipolar Hyperbolic-Squarad Emor Cauchy Emor

08 o N 08 /
[4 N, 06 / \
\

04 Ay 04 \
02

02
02 21

\ / o\ ;
04 \ // . /'/
\, {6 N /
N, \
A RN Jf \
/ a8 ~ -

08 " -

08 06 'UL(02 0 02 04 06 08 1V

08 96 04 02 0 02 04 06 08 1

98

Fait Error

08

o/

02

02
Q4

FIISN

08

st/

08 96 04 02 0 02 04 06 08 1

02
04
{6
08

Fouth Order Eror

Geman McClure Eror

Huber Error
= < -
08
08
\ 0
\
02
0 0
Q2 22
N N .
AN /
asF N\ 06 1
N,
08 Py 08]
08 06 04 Q2 0 02 04 06 08 1 08 05 04 02 0 02 04 06 08 1
Hyperbolic Squared Eror Log-Cosh Emoc
['E] /‘/ 08 rd 4
I’ t
06 / 06
04 o
02 02
0 0
02 02
af\ / a4 /4
o / " \ /
\\ 7 a8 //
08 /
\\ .// . .
0§ 06 04 02 0 02 04 06 08 ! 08 05 04 02 0 02 04 06 08 1
Minkoweki Eme
Logarthmic Emor
! - 08
08 - 05
0§ / \ 0
04 "
02 8 N
’) R /
“\\ / a
o 26 \
FISEAN / " .
a8 RN S ; N R
S~ d 08 16 04 02 0 02 04 05 08

1
1

95 05 04 02 0 02 04 06 08

99

Mean-Median Error

- Quadratc Eroe
."/'
08 . 2
. \\ 08 pe
osf . \ s AN
/ \ 06 / .
04f / \ \
/ \ wt /
0z2ff \
0
0
[
a2
\ 42 /
AN / /
.\ /“ 04 A‘/
TN /
N 0
8 S // ’
T o
08 06 04 42 0 02 04 06 08 - R
08 05 04 02 0 02 04 06 08 1
sinh Eror TokeyEre
T N
08 o \\ 1
0§ / \ 08! /
04} / \ 04
02 \ 02
0 0
a2 2
LTAN ,/ o \ K
a8 \ // " /
o8 N /
4// 48
" n I et T
R Y [6 96 of 92 0 02 01 06 18 1
Welsch Enor
'/ \\
08 e \\
/’ “
osp \\
04 // \
02
0 X
)
02 d
a
osb N /
N
08 "\\ /
\ /

08 908 04 02 0 02 04 0F

08

1

Table 5.2 1-5-1 architecture, New Activation Function. Learning rate 0.1, 1500 epochs. Epcohs
criterion was selected while training.

Absolute Emor

08
06
04
02

0.2

06
08

\,

\ /

7

\\.\ e

-~ -

36 06 04 02 0 02 04 06 08

1

Andrew Emot

06 /
04

02},
FYIAN
IS

28

08 06 04

100

Bimalar Hyperbolic-Squared Ermor CachyEme
T \\
08 g ~ 0
\\ ! . .
ost AN
N
/ \
04 / \\
02
0 o
22 22
04 w /
I /
“\ 7/ 6 ‘f
08 S . 28 S
S~ P o N
08 06 04 01 O 02 04 06 08 T6 06 o7 a2 0 8 o 05 o
Fair Entor
TS Fouth Order Emr
08 e N —
.
06 / 08 ™~]
/ /
04t)/ st/ J
02 / 04 / \
0 02 \\
o : @)
o4 02 J
J \ /
06 \ /' Py |\ /]
RN \ /
., e
. S 18 \\ 4
08 06 04 02 0 02 04 06 08 08 \ {
L . N
08 06 44 02 0 02 04 06 08 1
Geman McClute Ertor
P — Huber Emor
08 // .
S 08
ek, ,
04 / \ 08 /
4
02 d
02
0
0
02
04 ; oz\
d ¢
0 \'\ / ° \
\ FTI N
08 . o N
N . - . 8 \ / 1
08 06 04 02 0 02 04 06 08 f ——
: 08 06 04 42 0 02 04 05 08 1
Hyperbolic Squared Etror Log-Cosh Emor
8
08 N
// \ 08} N\
05}, kY / \,
g K 04} /
04 / \ /
/ 02
02 \
0
0
) 92 .
\
025 Q4p //
AN / \ /
AN / L SN /
o6F ’ m . -
08 X
N 36 06 Q4 02 0 02 04 06 08 1
95 05 04 07 O 02 04 06 08 1

101

Logarithmic Emor

e ~_ Minkowski Emoc
08 o N
e -
[e AN 08) N
/! * A \
04 ‘/ 05, , / N
02}/ . ot/
Y /
0 { 02
02 \ o {
X A
04 2 /
\) \
a5t N\ / By /
N / 3 s
o8 ~ 7 26 \ /
I e . T i
T 08 06 04 02 0 01 04 06 06
28 05 04 07 0 02 01 06 08 1
Mean-Median Eror Quadratic Eror
s
08 rd ~\ 0
L \\ & p ~
o N osp
o4} / \ /
] 04
ol \ /
- 02
0
[}
02 O : a2 O
Qb /
\\ / Q4 \\ /
08 N\ 4
. 3 /
08 ~
N 08
96 05 07 02 0 02 04 05 08 o= | -
08 06 ©4 02 0 02 04 0§ 08 i
sinh Eor Tukey Eror
=
08 7 08
/
-
ost 7 % 0§ /
04 4 04
02 02
o 0
02 02
o4 o /
\ /
FYIRRN ya 26 , T
. N
o V4 8 ./]
~
\\ I PR— " 1
. . f . 28 05 04 02 0 02 04 08 08 1
96 06 04 02 0 02 04 08 08 1 & §
Walsch Emor
——
08 P
06 .’/ \
/ ™
04
02
]
Q2 I
LXIAN /
FYEAN ///
08 .

08 06 04 02

0

02 04 06 08 1

5.2.2 The Polynomial Map
The solution to the linear constant coefficient differéntial equations are obtained as a

characteristic-value problem of the characteristic equation obtained by posing the

102

problem as one of matrix differential operators. Polynomials are frequently employed and
the example mentioned here is but a small application of the innumerable existent. As
these functions are most frequently applied, the CNN was used to address them to study
the convergence. The quadratic and bi-quadratic maps were considered for the
experiment. The architectures used were 1-5-1 and 1-10-1, learning rate was 0.1, and
Nitta and New activation functions were used for solving the problem. The target error

was set to 0.000001. The number of epochs was 2500.

y=x (5.4)

4

y=x (5.5

were considered for the present study. The quadratic function is less steep than the fourth

power polynomial and both are even functions.

08

a7

04

03

02

01

4

Parabola B+Quadratic

08

L L L "
06 04 02 Y
x

GJ; 04 05 08

06

05

04

03

02

01

08 06 04 02

. f . .
o 02 04 06 08
x

(2)

(b)

Fig. 5.2 The polynomials of quadratic and Fourth Power are shown in (a) anq (b) respectively.
A comparison clearly reveals that the curves are a way different with Fourth Power

having a slower rise than the Quadratic. Both curves were chosen to

Table 5.3 Capturing Parabola using Nitta Activation, with a 1-5-1 ;;rchitecture, learn rate of 0.1.

Epochs were set to 2500. Epochs criterion was set for the training process. 0

Absolute Error

Andrew Emor
08 08f ™ —
3
07 a7 - /‘
\ /
06 osp % 7
7
05 05 < <
<, 7
% 7
04 0.4 X J
\ | 7
03 03 \ /
N /
02 3 02 N
0.1 01 &
N e
08 06 04 202 0 02 04 06 08 48 06 D04 92 0 02 04 06 08
Bipolar Hyperbalic Squared Error Cauchy Emor
08 T v - - T y - r
arf*
08

05 /f
04
03 /

02 % £ 1 > .
01 . / 1 ; R s
ot assonrnen g8 06 404 02 0 02 04 06 08

Fourth Power Eror Fair Emor
T ™ T T T 08 y T T T 3
\

/
L) 4

B 7

\ : 7

08F % b 4

05
03
02 /

-D.IB -Q.‘E 0‘4 0‘2 0 02 Dll 0.‘5 UTE 08 08 04 02 0 02 04 06 08

Geman McClure Error o8 . § Huber Eror . .
[1:] T
A\
8 07f%
07 \
Y
06 06 \‘
’ \

y .
05} / 0§ %
0.4
04 .
/ ’ \
03f 1 ’ \x /

j 02 ; g
02k \;a“ '.;.\é.k :‘.
o1 N . 01 \—'// 1

N) i
06 04 9.

G5 06 D4 02 0 02 04 06 08 a8

104

Hyperbolic Squared Error
08F T T T Logatithmic Error
07}
086
05
0.4
03
/ Y
02 \ / 1 02} |
rd
0.1 \ A w . r}_}: |
) L S So e
08 08 04 02 o 0.2 04 06 08 08 06 D4 02 0 02 ClJl 08 U.B
Mean Median Error
T 08F T T T r T }.
1 0.7p" V/]
08f l 4
05 \'\' <
04 4
03p 4
/‘
1 02 4
1 01 -
08 0B 098 98 D4 02 1] 02 04 08 [X:]
Minkowski Emor Quadratic Error
0BF v r T 08F— . r —— ‘1
o7} 7" jf-
08} 08 1
osf as 1
04 04 1
03 03 / 4
02 02 /‘]
0.1 0.1 E
S
-0.8 -04‘6 -DIA -0?2 0 02 0‘4 06 D.IB 08 06 04 02 0 02 04 06 08
Sinh Error Tukey Eror
08 - —_— 08F—T .
o7 [o7} 1
06 1]
0s X, 4 4

0.4 / 1

0.2 '5\\ / B
01 \‘ ’:’// 4

a8 406 04 02 a 0z 04 06 D08

105

Welsch Etror

As earlier pointed out, the data sets were chosen normalized for otherwise the activation

functions will not be effective.

Table 5.4 Capturing Parabola using New Activation, with a 1-5-1 architecture, learn rate of
0.1, 2500 epochs. Epochs criterion was set for the training process.

AEsclute Eror Andrew Emat
cs 2]

3 J
! 4 08 J g
08 ; X 7
05 4 05 A4 4
%
04 - 04 ¥ 4

4
03 / 1 03 kN /
. kY Vi

02 / 02 .x f)
o o) \..._/f
0_‘ -U..ﬂ -O,IG -0‘4 Q2 Q U.IZ U‘ll 08 D‘B 1 q' 08 08 04 02 0 02 04 05 08 1
Bipolar Hyzerbolic Squared Error Cauchy Ermor
08 os
o8} | % LU
07 /o o7 3

0.6 / 4 08 ““
05 / 1 05 “\ /

04 / p 04 Y

03 / 4 03 \‘ ‘/
\ /

02 // 02 % !

3 S v S

0_‘ -OIB -0,‘5 -OJA a2 0 02 04 08 08 1 4 L£8. 946 04 02 0 02 04 0B 0B 1

Fourth Power Error

Geman McClure Eror

orf

oef %
Al

05 \

ql 08 06 04 .02) 0 02 04 06 08 1

05

04

03

02

106

Fair Enor

Huber Errer

Hyperbolic Squared Errar

09

o8 /

a7

08

08

07

08

05

04

02

0.1

Logarithmic Error

Log Cosh Error

03
02

01

Mean Median Eror

‘1 08 06 04 02 0 02 04 06 08 1

107

0s Minkowski Errar Quadratic Emor
LE]
08]
oe A ?
14
07] \ /
07 \ ‘,v'
06 J /
0€ \ Y J
05 1 05 7
04 E 04 ,"
A 1'
03 4 A i
03 \
02 1 02 \ s
.
. /
1]
° R o ™. /
0 . . . ol T
1 08 06 04 02 0 02 04 06 08 1 4 08 06 04 02 0 02 €4 05 03 1
Sinh Error
0s 08 Tukey Error
08) 1 oe !
3\ i
07 1 o7p J T
\ LY 7
08 4 08 x J 4
\ I
!
05 1 05 \ s]
04 4 04} \ ’," J
\ ;
93 1 LE \ / 1
J -
02 7 B 02 \ J
/ ., y
o ,] i s J
008 06 04 02 0 02 04 06 08 1 855 05 04 02 o0 02 ¢i 05 08 1
‘Welsch Error
LE]
08 1
07 1
06 1
05} 1
0.4 1
03 1
02 1
01 1
h 1

Table 5.5 Capturing Fourth Power using Nitta Activation, with a 1-5-1 architecture, learn rate
of 0.1, 2500 epochs. Epochs criterion was set for the training process.

Absolute Error Andrew Enrze
o6} f) 08 f
N {‘
05 1 osry j g
o | . ol § i
3 ']
1
03 \] o3 Y 7o
3 7
02 x f 1 02 '\. / 4
Y Ji
\\ / o kY £ |
) // . A
i YT 55 06 o1 3z 0 2 0f 08 08

Bipolar Hyperbolic Squared Error

108

Caucny Error
0§ o]
P
!
05 0s \ 1
‘x]
04 4 . /
/ ol /
03 % J
1 03 \\ P
/ ‘ /
i s
02 / 4 02 “A 4
Y
o / 1 ot]
-
08 06 .04 02 0 02 0.4 06 08 08 06 04 02 0 o8
Fourth Power Error Fawr Error
o} -
]
h
05 \],f J
0.4 \ 4
\ 7
3 i
03 \ L
y ;1
\
02 A ; 1
\
01 kN A‘/, i
08 06 04 02 0 02 04 06 08 88 06 04 D02 O 32 04 c& 08
Geman McClure Errar “s.zer Error
06
.05 4
04 4
03 p
02 -
[:R] 4
_—
08 06 04 02 0 02 04 06 08 08 08 04 0 02 04 06 08
Hyperbolic Squared Eror Logarzhvmic Eor
0§ o6 J-
05 4 05 i
/
0.4 4 04] 4
03 R 03 \ 7
1
B
B 02 . q
02 A s
o1 s 1 o1 5 4
) e / J
08 06 04 02 [+] 02 04 06 [X] 08 02

109

Log Cosh Error Mean Median Enmor
06
.f
05 !
04 J
J
03 T
02 \\ J
0.1 ‘\ /‘.
.
e _/
08 06 Q4 Q02 0 02 o0& 08 08
Mean Median Enor Quadratic Erncr
06 0§ ‘;
!
05 1 05 j{
04 T 04 ;/
{
03 03 {
H
/
02 1 02 /,’
01 ’ j s
01
" . f .
98 08 44 02 0 02 DAL 0efgos 08 06 04 D02 0 C2 04 06
Quadratic Ermor Tukey Errer
uet\ 06
05 4 05
04 4 04
03 4 03f
02 4 02f \
N e 4 01 \
0.1 / .
4
08 06 04 02 0 02 04 06 08 08 06 44 02 0 02 04 06 08
Welsch Error
L
a5t
04
03
02
01
08 06 04 02 0 02 04 08

Table 5.6 Capturing Fourth Power using Nitta Activation, with a 1-10-1 architecture, learn rate
of 0.1, 2500 epochs. Epochs criterion was set for the training process.

110

Absalute Error Andrew Ermor
08 \ 08 é
J\ J
/
05 \ 0s \ /
]
04 \] 7
04r
| /]
} 4
03 J 03]
\ /]
02 N
x S /
\ Y K
81 > 4 01 L 4
N 4 », &
N _.M _,",'/ L) . __/
08 06 04 02 0 02 04 06 08 08 06 04 02 O 02 04 C& 08
Bipolar Hyperbolic Squared Emor Cauchy Emror
0§ { oed §
' 05 \ : !
05 T
H
04 7
04 H
\\ 03 M
03 s
\. \
/ 02 ;
02 e X ¢
/ 01 % K"
, YA
0.1 A . = F
\\‘\ _/“' 65 0§ 071 02 0 02 060 o5 48
A rh
08 06 04 02 0 02 04 06 08
Fourth Power Enor Fair Etroc
06 s i
I {
05 \ 1]
i
!
04 H
i
7
03 /
J
\ :
02 \ '
/
o1 \ ¢
05 05 01 02 8 02 04 38 o8
Geman McClurs Emror Huber Error
08 \ f 06 j‘ i
i | i
{ A !
05] ost ‘
/ \]
04 \ i 04 \]
\] 4 ;
b\] 03 J;
\ f \ H
\ \ b
02 % / 02 ;
kY s \\& S
' ot K
01 N “\ -
N e —
08 06 04 02 0 D02 04 06 08 08 06 04 02 0 o2 04 s aE

111

05

04

03

o1

Hyperbolic Squared Eror

06

05

Log Cosh Enor

0.2 Q 02

Loganthenic Ermor
1
1
j
7
04 Q2 o
Mean Median Emor
1
/
]
j
7

Q4 02 o 02 04 05 08

Minkowski Error

Quadratic Eror

~—

.

o8

a4 02 0 02 04 Q25 08

Sinh Emor

Tukey Error

08

0 02 04

04 Q02 o 02 04 13 as

112

Welsch Eror

as\ -
DS.'
)

L
03 \
02 \'\‘
%
01 e,
L. o P
\.*:-.. v

08 06 04 02 o 02 04 058 08

Table 5.7 Capturing Fourth Power using New Activation, with a 1-5-1 architecture, learn rate
of 0.1, 2500 epochs. Epochs criterion was set for the training process.

AR / Da { f]:
03 \\ ; \ /
o2 \ o2 A PO

08

08 -O.AS -U..-I 02 0 02 04 D.‘S D;B 08 06 04 02 0 02 04 0€ 08

Bipolar Hyperbalic Squared Error Cauchy Eror

08 -0‘5 04 02 o 0.2 D,‘l 06 08 08 06 04 02 0 02 04 08 08

Fourth Power Eror Fair Error

nsx
05
0.4] 1
\ /
03 !
!
1

02 x\ Ji
i
.“

01 EN &

-0‘8 06 04 02 a 02 04 06 08

113

Geman McClure Error

08

05

0.4

03

02

Huber Encr

08 08 04 02 0 02

.

——

el

0.2 0 02 04 08 08B

Hyperbolic Squared Error

08

05

04

03

02

L e :
f
//_
/|
/
7
-

08 06 04 02 0 02

Log Cash Error

Mean Median Ermor

.,

\“hnw”

08 08 04 D2 0 02

02 [82 04 06 08

Minkowski Error

Quadratic Emor

N

N e

e,

e,

08 06 04 02 0 02

02 0 02 04 06 08

114

Sinh Error

06

0s

08 06 04 02

Tukey Emrer

063
i
ol
04 \\ !/' 1
03 \ .,.'
02 \\ .‘.":
] \ _I"
08 06 04 //

02] 0z 04 0%

Welsch Error

Table 5.8 Capturing Fourth Power using New Activation, with a 1-10-1 architecture, learn rate

of 0.1, 2500 epochs. Epochs criterion was set for the training process

Absolute Error

Andrew Emor
06 /{ 08, IA
05 05 1" l 4
b J
0.4 04} Y 7
4 /
03 o 7
\ /
02 02 \ .
;);
y
7 3 £
01 F J 01 "\ &
/ —— S J
08 <06 04 02 0 02 04 06 08 08 46 Q04 Q02 0 02 04 08 08
Bipolar Hyperbolic Squared Ermor Cauehy Enor
06 \ 08 X /‘
05 08 \]
. '
04} % j]
04 J L]
7 \ P
03 \ / o /
kY v
4 :
02 \ 4 02 Y ;
N £ kN /
A\ P
01) A
01 S 2 % A
>, £
s — e —
08 46 04 02 0 02 04 06 08

115

Faurth Power Emor

02 0 02 04

Faue Error

06
B

oof ‘

S
04 l",,]
o3t j
} /
\ /
02 by /
4 4
£
01 £

08 06 D04 02] 02 042 06 08

Geman McClure Emar

02 0

Huber Error

Hyperbolic Squared Eror

02 0 02 04

Logarthmie Enor

f .'

[:5

-

08 08 04 02 o 02 04 0s [2:]

Lag Cosh Emor

Mean Median Emor

116

Minkowski Emor Quadratc Eox
- o6l 1
i {
A 05 \' 1
|]
»
| 4 \
J oy, J
/ 03 ‘v" /j
: \ i
R 02 \ /
Y
. A\ A
e) A\ 4
\‘\ - S : S, _f:'
M // \ A_/
08 06 04 0.2 0 02 04 06 08 Q8 -D‘; 44 02 0 02 04 08 o8
Sirh Eror Tukey Ermor
06 osf
", 1
05 05 \ f
4 !
04 77 04} % §
]7 »
N 1A 0 \\ /
02 / 02 \\
ot / 1 C
) &
. . J i
08 06 04 02 0 02 04 06 08 a8 06 04 02 0 02 04 06 08

Walsch Emor

01

08 05 04 02 0 02 04 06 08

5.2.3 The Similarity Transformation
The Similarity Transformation was studied in Nitta (1997). In the present context, the

mapping is studied as a particular case of the Bilinear Transformation. Fig 5.1 describes
the problem. The outer circle is of unit radius while the inner one is half the radius of the
outer circle. The problem requires a Neural Network to map the points on the outer circle
to the ones on the inner one radially. It can be seen that the transformation is a particular
case of the Bilinear Transformation as earlier pointed out. The parameters for this
experiment were: architecture was 1-5-1, learning rate was 0.1, epochs were set to 1500.

Nitta and New activation functions have been used with the problem. The target error

was set to 0.000001.

Similarity Transformation

-1

05 0

Fig. 5.3 The Similarity Transformation. The outer circle is mapped
radially onto the inner one which is concentric with the
outer and half its radius

117

Table 5.9 Capturing Similarity Transformation using Nlita Activation, with a 1-5-1 architecture, learn
rate of 0.1, 1500 epochs. Epochs criterion was set for the training process.

Absohute Eror f Aadrew Eror
1
08 / 08 .
/ N e A
08 ot
/ y ,
04f / Q3
04 . /
rd i
02 £
02 / \
0 i
o 4 i
ah % /
22 \
_.// / o \\ _,/ /
a4 .
\, / ast /
FTISEAN / NN
28 - > f .
4 08 08 04 Q02 0 02 04 06 08 1
36 06 97 22 0 02 04 06 08 |
Bipolar Hypesbolic Eor \ Cauchy Eme
1
\ 08
08 P /
06 -
08 /
04} / /-\
04 ,/-\ " ’ / .
02 7 Y { \
\ 0 {
o H i
‘] o \ /
\ ! z
iy i 4 air\ _.// /
e, / \
o4 S / PHEAN // -
05 v 08 N
08 o
\\\s T8 a5 01 01 0 02 04 06 08 1
88 08 i 02 0 02 04 05 08 1

118

, Fau Enor
//'
8 e
./
0§ /
[/ o~ ™~
,
«
02 s

92
N
04 \\‘./
06 \
af N
Kl o~
408 06 04 02 0

Fouth Pzwer Ence

W

o5t

u./
iq

€2 \

\
24 Y \\

Q8 ™,

08 \\

B
1 08 96 04 02 ¢ 02 C4 08 0B 1t

0
[}
0

02

0

04
08
08

Gaman-McClure Error

"

1

B
6

4

0
2

1 08 06 04 D2 0 02 04 08 08 1

uber Emor

o2y /"‘ ™ \
{ \
[} § 3
02 \\' /

4 08 06 04 02 0 02 04 05 08

1

]
a2 J
ar\ A4 //J
NN |
N

Kl " N P n
4 08 06 Q04 02 0 02 04 06 0B 1

Hyperboilc Squared Ermor

Logantheic Ermoe

B 7 \

024
\\ RN
LU AN N’ /
o \, ,
08 //

Bl

/

/

4 08 Q05 Q4 02 0 02 04 05 08

1

Log-Cosh Emmor
1
08 e \
08
TN \
y / .
/ /
02 £ \
{
{
0 |
b
3
a2 %
", o
04 ~. e /
9sF \ . /
N
08 ~ e 1
~

D6 06 04 02 0 02 04 05 08 !

Minkowski Eror

119

Mear-Median Eror

08 / \ . Ouadtic Emor
/
/
wr/ — \ oe s ™~
nn// e ™ \ oo} ™
02 \ ’ N,
2 \ ot/ P \
N
0 } 02y ,/ N y
j ‘ !
€2 /74 o (\ 1
]
04 7 af \ / ,J
o / u \.\ "0“ ’ /
R S N ‘v/ /’
8 ~ / 1 0 \ /
E L) s g
‘08 06 04 92 0 02 04 05 08 1 *® \ /
4 . \ .
08 06 04 02 0 02 04 36 08 1
. Sih Emr . Tukey Enor
08 / 08 v
e \
0§ / \ st/
ot / '/ \\ o // V/-\\ \
02§ ’ 02 ," \ \
. 4 { i]
0 3 H
/
22 a3 A /
\ \ . J i
o4 . \
\ / 2\ ~——
ast o\ / gk
\\
a8 N - 08
408 06 Q4 Q2 0 02 04 06 08 1 ’~| 08 056 04 02 0 02 04 C& 08 1
Walsch Enor
1
08
y
st/ N\
ol /_\
02 N
0 }
02 /

08
.
a8

E]

04 \‘\‘//
/

4 08 06 04 02

0

02 04 06 08 1

Table 5.10 Capturing Similarity Transformation using New Activation, with a 1-5-1 architecture, learn

rate of 0.1, 1500 epochs. Epochs criterion was set for the training process.

Absolute Ermor
1
08 e \\\
v ™
[

/ AN \\
o4t/ I § \
02 I'4 4\

J
0 i ¢
\]
02\‘ . ,,‘/)i

\ "t /
A\ " /
FT SN /

\
N .
a8, s
\\ -

%8 05 o1 02

0

02 04 06 08 !

Andrew Error
—
e \
N\
,,’/ ' //—-\\ \.
/ (/ "\ \

“r 08 05 04 02 0 02 0¢ 25 08 1

120

Bipolar Hyperbolc Eror

08 /// .

o6t / \\

04 / TS \

v ; AN \
0

02 / s
) \ \\ J / o :
¢ \\ .\"'\...// / o /
208 o /
\\ 25, Y,
08 <8 - 9
B . .
<108 06 Q04 92 0 02 04 08 08 1 “T08 38 ¢ £z 0 c1 o4 o8 ©8 1
Fait Enor
1 <
Fourth Power Emer
08 /
. AN
o — N\
04 sl \\ \
02
)
02
QUL \./
\ /
1 S
N e
o8 /
) S
4 08 06 04 02 0 02 04 05 08 1
GemanMcClure Emor Fber Emr
1 1
08 3 \\
08 06 \
04 o4 A\
02 02
0 0
02 a2p
au / 24}
/
05 g5 /s
- -
o8 d a8 -
. " 4
"6 06 G¢ a2 0 02 01 06 16 1 4 08 06 d4 02 O 02 04 05 08 1
Hyperboie Squared Emor . Loganthme Emor
1
08 - 4 08
p
06 / s/
/ \
04 / ,/,--\\\ asl / ,/-—\\\ X
: d N\, A
02 ; \ 02 \
{ \
0 { . 0 i
{ 22 J
02 % / : J
N » ’;. 84 \.—//‘
ur\; S /
0 \ g5 .
AN .
28 ANy ,/ 08
L L n 1 v
08 06 07 02 0 02 64 06 08 1 D8 06 44 02 0 02 0¢ 06 68

121

Log:Cash Emor

\
0 1
o2
\
™,
U\, - s
o6F N,
N
08 N -

N
ol 7 \
2 ! \
{ }
0 i H
{ i
a2y \\ ; ;
\ bN B
au
\\ ‘v’ //
O

« /
08

] - . "
4 Q08 06 04 02 0 02 04 96 0B 1

Mean-Median Emor Quadratc Ermor
! 1
08
Py \ 08 ~
06 08| \
‘/.’"\ \
04 - ~, o) //\ \
\ A
02 / 02f I
/ ; \
0 o { i
/ { /
o2 4 u.z\ \ /.7 ;
;
N / aN
08 \\ {74l 08|
08 AN a8
o5 06 94 02 0 02 04 06 08 e 05 @4 02 0 02 0f @5 88
Sinh Emor | Tukey Emor
1 r
08 08 \\
08 25 \
i ,/’ﬁ'm 04 //_ \
\ \
02 02 \1
0 H 0 H
02 Y, / / €2 . /‘ /
\ / . d /
al\ \\.,,// / u \/ K
/
25 \\ / 2 /
N p
Q8

“_ o

08 06 04 02 0 02 04 08 08 1

8¢ \ s
1

[R
08 06 01 07 0 01 of 0 08 !

Welsch Error

Q2
04
asF

48 ~

.

08 a8 o4 92 0 02 04 06 08

122

5.2.4 Complex Exponential Map
The mapping defined by the equation

w=e’ (5.6)

maps points on the z-plane to points on the w-plane. As the map takes points on one plane
to points on the other, the best way to study the transformation is by considering a curve
on the z — plane and study the image of the map on the w — plane. The complex variable z
was chosen to lie on a unit circle given by the formula ¢ the transformation affected by

the formula is given by the following equations

Re(w) = e cos(sin(8)) (5.7a)
Im(w) = ¢“*? sin(sin(8)) (5.7b)
where 6 is the amplitude of the complex number z. The solid line in the plots shown in

Table 5.11 is the image of the transformation.

Table 5.11 w=exp(z) with 1-5-1 architecture, Nitta Activation, 4000 epochs, Learning rate = 0.1.
Epochs criterion was set for the training process. Epochs criterion was set for the training

process.
Assolute Error Andrew Error
a7 07 ’ T T T \
0§ 06 v
05 0 S
04 04 N /
03 : 03 / J
S Pi
02 (o 02 ‘/ 1
_." AY /
o “ o \ /
" ..-;/ X eeasasrees
= 5 na Y3 e a7 3] 03 04 05 0§ 07
Bipotar Hyzerbolic Squared Error Cauchy Error . — .
07 - i N 07 \\.;
06 08} . ‘J
g k
05 05 K
p
04 04 L
.;l
03 / 4 03 7
4 /
.‘ 02 fo B
& P
. 4 1
01 /: a1 \) /
R I i ~
02 CERNNY 05 06 07 02 03 04 05 06 07

123

Fourth Power Error

08

05

03

02

07

06

0s

03

02

a1

=

g

B WY WPRPUP R I

:\.4 /‘ 4

P

5 3z 63 34 05 06 07
Geman McClure Enor
07) o T i T Huber Errce
0§
05t
04
0.3
0.2 e
L : i
o \ 7,
m._.-uy"""‘/
02 03 04 05 06 o7
Hyperbolic Squared Error Logarithmic Error
o T i i i 7 ™ v T - -
7 0 T
1 08 \\ 4
05 05 4
04 04 1
03 4 03 / 4
02 4 02 4
P
] 1 ~
01 01N /
— . = .
02 03 04 05 05 07 22 03 04 35 08 07 08 Q9
Log Cosh Error Meaan Median Eror
o7 i T T] 07 T \\ .
08 13 '§
05 LH 4
: 0 3
0.4 K ;
H 03 4
03 : 2
£
02 9 1
0.1 1 1
" L n e - ~
0.1 02 03 0.4 05 06 07 3z 3 34 05 06 07

124

Minkowski Error Cuadratic
07 T - dua: ic Errer
07 T - I
\
08 "
: 0§ 4
0s : 3
: 05 1
a4 04
03 : 03
a2 j 02
o1 \\ s 1 01 5
o 0.2 03 04 05 06 07 ¥ CERRY 05 %6 o7
Sinh Ermror Tukey Ence
erp " b 07 " N
06 08 \
y
05 1 0s
04 ; 04 }‘
03 4 <
/ 03 7
02 / 1 02 1
&
s ..»"'(K
0.2 03 04 05 06 07 02 o3 0. 03 06 07

Welsch Error

07

06

05

04

03

02

o k« L
"'tlo-a-o-o-n---‘o.h—l-«"
e

_ 7

02 03 04 05 06

Table 5.12 w=exp(z) with 1-10-1 architecture, Nitta Activation, 4000 epochs, Learning rate = 0.1,
Epochs criterion was set for the training process.

Apsciute Error

07

06

0s

03

02

Andrew Emor
07 j \]
08 \:
05
04
03
02
a1 \ 4":".
\’Q"“‘"":’/ .
02 03 94 05 08 07

125

Bipolar Hyperbolic Squared Error
o7 —~ - . Cauchy Error
1 07 O\
AL
0§ N
4 08 ;
0s 0s -
04 04 :
i o
1
03 03
02] 02
o \
i N 0 2\T3§::~ 05 0
02 03 04 07 B o7
Fourth Power Error Fair Eror
07 T T] 07 \ 1
08 : 08 X;-
H 4
s : 05 4
04 04 J
1
03 s 03 /f
02 J 02 / 4
/
l'/
01F s J
0.2 03 0.4 05 06 07 02 08 07
German McClure Error
07 T T —] Huber Enor . .
07 (e
05 4
08} M
4
05F 08
04 04 [1
03 03 F
02 1 02 / 4
-
01 4 0.1 g
2 ..-/
0.2 03 0.4 05 08 07 s 02 03 o4 05 08 o7
Hyperbolic Squared Error
07 T A Logarithmic Error
08
05
04
03 1
0.2 / 1
rd
o1 \ /]
" ovenyzee® 02 03 04 05 08 o7
02 03 04 05 06 07

Log Cosh Error Mean Median Encr
ozf 07 i T
‘.
i
08 s ‘3
‘,
05} 05
04}
03
02r
01 E .
22z
02 03 0.4 05 06 07 02 03 04 06 07
Minkowski Error Quadratic Errce
07 T

Sinh Error Tukey Enor
07 i k y %' 07 : T T
06 3 08
05 05
04 0.4
03 ol 03 //
02 02 ,’
o1 \ a1 //
\-—-....»--- \ i -~
02 04 0.2 03 04 05 06 07
Welsch Error
07 T) M
08
03
04
a3
0z

Table 5.13 w=exp(z) with 1-10-1 architecture, New Activation, 4000 epochs, Learning rate = 0.1.

Epochs criterion was set for the training process.

Absolute Error

- Andrew Errar
07 B 07 N
o \ o \
05 as :
04 0x :
a3 03 :
o2 02
CR) e 1 01 x -
..‘.’ N.\ g
aern” ‘N...._......-::;/A
0.2 03 0.4 05 06 07 03 63 04 os 08 07
Bipolar Hyperbolic Squared Error Cauchy Emor
07 [- i T N j i \ 07 N
06} . 06 \‘.‘
o5t ? 05 .
04k] o
04 3
03 4 03 j.
02r E 02 4
01 \\ / 4 01 P 1
R
i o el .
0.2 0.3 0.4 05 08 07 02 03 04 08 06 07
Fourth Power Error Fair Enor
07" y \ 9 o7 v 4
06 :\T 08
05 4] 05 1
04 S a4 2
SEy 7
03 e 03 // 1
02 g 02 Y
A
"
0) T d ot *\ < q
e r g e e aee ernasansnenes® S e
0.1 0.2 CE] 0.4 05 [07 02 03 04 o8 06 0.7
Geman McClure Error Huber Error ;
07f i i 1 07 NE
Al
06} . 06 “\;
05 05
04 04 /
03] 03
/
L] 02 p,
02 Vs &~
o ~
4 \ <
01 \ o« 1 a1 s L
~~\~e_ M/ e e seaz2s 35
= o 02 03 04 05 6 o7

GF] 03 0z 05 08 o7

128

Hyperbalic Squared Error

orf - . . Leganthmic Emor
1 07 X p
a6} \
06 ‘x"
3
08 3
LE]
04}]
04 4
I ¥
L -
03 / o3t 7
v
02t g 02
N,
01 \ﬁ] 01 &\ e
L N o \Y_*,,ﬁ--......
02 03 04 05 06 o7 CF) o3 o4 05 o5 o7
. . Log Cosh Error Mean Median Errcr
0rF . — — orf . y -
osf
05t
04
03
02
01 J
-~
r eswoans sl L
02 0.3 04 05 06 0.7
Quadratic Error
Minkowski Error 07 i 1
o7f
08 d
06t y
05 1
05}
j
04}
03 / 4
03}
02 £
Il
02}
a1 ‘..‘I 1
01f T y”/
\nau---u -n--...-‘-.-.00"""'..‘ =
— 02 0.3 0.4 05 06 07
0.1 0.2 03 04 05 06 07
Sinh Eror Tukey Error
orF . . . _‘ arf N
] i 06 \
05 1 st
04 04f Jjj
03) 03t 7
- 7
02 02l /../
rd
° \‘\'.}\Q o \ /
02 03 04 05 06 07 . " n N

02 03 04 05 08 07

Welsch Error
07 T Y
08 B \\ :
05 \.
04 o
03 './" {
:/
02 By J
01 ‘\ J
\ renersasaesne s
02 03 0.4 05 06 o7

Table 5.14 w=exp(z) with 1-5-1 architecture, New Activation, 4000 epochs Learning rate =0.1.

Epochs criterion was set for the training process.

129

Absolute Error Andrew Emor
07 \ 4 07 \‘ 3
' 08 \
08 .5 | -:
05 1 05§ .'J
04 R
-
03 j. 4
02 / J
™ \ <
02 03 04 a5 06 07
Bipolar Hyperbolic Squared Error Cauchy Emor
r - a7k T _.
ost e
o]
04} N
j”
03f
7z
02} <A

o \ |
CE] 3 [5 06 o7
Fourth Power Emor F..' Ermor . ;
07) i T NE a7 \:
\\ "
\J os} 4
q‘ -
J st -
: p
! 04 p
/ 7
03 IE

04

130

Geman McClure Error

07 02 03 0.4 Qs 08 o7
Hyperbolic Squared Error Logarithmic Error
07 T 07 N
A
X
06 08 \"
05 05
04 04
03 &
02
02}
01
o1 \
. N\"\.S:.,....‘.....--"*’ | ; 02 03 04 05 06 07
02 . 0.4 05 06 07
Log Cosh Error Mean Median Enar
o - v T
08 \
05 K
04
03
02
ot \)
L _"_,,.t"°

0.2 03 0.4 05 06 07
Minkawski Error Quadratic Error
07 -
06 i\
05 4
04 J
03 - 74

07

131

Tukey Emor

o7 o

Sinh Etror
07 T

06

05 2] : 05

04 N 04 p

- i

!
03] 03 /
J
02 02 i
A K
A 0 ”-
at \ . o1 .
ey -~

0.2 03 0.4 05 08 07 D.I2 03 0.4 05 08 27

07
06

05

03

02

o \
. N

5.2.5 Exponential Map

The exponential map envisaged in this section is a particular case of the function studied
in the article 5.2.4; at the same time the map is significant because the imaginary part is
zero The complex variable based exponential function involves capturing the real and
imaginary parts of the image of the map separately. The present map is purely real in
nature, that is essentially the imaginary part of the function is zero. The function

considered for mapping is given by the equation
y =0.3253¢™* ' (5.8)

which is the exponential plane curve._ The input x was chosen to be a hundred points in
the interval [-0.9,0.9]. The testing was done on a hundred points chosen in between
bypassing the points chosen for training. A plot of this map is shown in Fig. 5.4. The
architecture was 1-5-1, learning rate was 0.1 and epochs were set to 2500. The solid line

is the function while dotted lines are the simulated values of the network.

The Exponential Map

08

086

0.4

Epochs criterion was set for the training process.

132

Fig. 5.4 The Exponential Map trained with CNN based on Nitta and New Activation Functions

Table 5.15 y=exp(x) captured by 1-5-1 Nitta activation based CNNs. Learning rate was 0.1, 2500 epochs.

08 Absolute Eroe . Andrew Eror
07 o7
06 < 08 -
05]
04 04
03 L c3
02 < 02
08 08 04 02 6 02 04 06 a2 0 02 Df‘ [1] 08
oe Bipolar Hyperbolic Squared Ermor o8 Cauchy Emor
07 \ 4 o7
06 "‘\ [
05 cs g
04 04
03 03 4
02 02 -
'0‘8 ‘D“E 04 02 0 02 04 0; 06 44]7 02 0 02 04 06 OB

133

Fourth Power Eror

Fair Error

Geman McClure Eror

Huber Ermror

08 06 04 02 0 02 04 06 08 08 06 04 02 J 02 04 0B OB

Logararmic Emor

Hyperbolic Squared Eror

o8
07F N <
08
0s

04

03 4

02 4

08 08 04 02 0 02 04 06 08

Mean Median Error

Log Cosh Error

02

NR AR N2 N2 A n? r4 NR AR

134

Minkowski Emror

Quadratic Ermor

u‘a\
] a7
os}
05
04
4 \'\
™.
03 N
»
e 02
[- R S—— . A —
08 06 04 02 0 02 04 05 08 N
38 02 0 02 o4
o8 Sinh Error o Tukey Eror
07 E 07
06 J o
05 .
05
04 J
04
03 J
03
02 4
02
08 06 04 D2 O 02 D4 06 08 | I
84 02 o 02
Welsch Etror
08
07}) p
08 . j
05 4
04 E
03 . -
02 g
08 06 04 02 0 02 04 06 08

the training process.

Table 5.16 y = exp(x) captured by 1-5-1, New activation based CNNs. Epochs criterion was set for

Absalute Error

06 04 02 0 02 04 06 08

Andrew Enmor

08

a7

:13

0s

04

03f

02

02 0 02 o4

135

Bipalar Hyperbolic Squared Error

08 08 Cauchy Errac
07 =
4 07 4
0s 1 o
05 [} ~
™
04 04 |
03 03 1
02 « 02 4
08 08 04 02 0 02 04 05 08 58 08 o1 27 0 oI 0s 06 GCE
Fourth Power Enor Fair Error
08 T
07 g .
08 |
05
05 4
04
04
03
03f 4
02
02
01 . N - — N
08 48 08 04 02 o a2 04 08 o8
08 Geman McClure Error aber Emror
07 j 1
06 1 1
os 1 05 1
04 1 04 4
03 4 03 4
02 4 02 4
" " " . - . . . N
08 06 04 02 0 02 04 06 08 08 96 04 L2 0 02 04 06 08
-
Hyperbolic Squared Emor
[1£:]
07 \ 1
06 \ 1
\
05 1
04
03 a3
02 0z
-U,IB -O.IS JJ‘J 02 a 02 04 06 08 93 46 04 Q2 0 08

136

Log Cosh Error
T T

08 T T . o8 Mean Median Ermar
- "‘
07, ,
R o7 N,
s, ",

06 e ~

08 Ay
s S,

0s \
04

04 \\.
03

03
02

02
0.1 bt

08 L " " " . "
08 06 04 Q2 [02 04 08 [:1:]
08 Minkowski Error 08 Quadratic Emar
*a_‘
07E)] o7t N
08 08 \\\
05 05 \\.
04 04
03
03
02
02
0.1 . L 3 P . "
08 08 08 04 02 1] 02 04 06 o8
Sinh Enor

08, Tukey Error

NEN)
08 '\\

05

03

02

08 08 04 02 0 02 04 06 08

Welsch Error
08 T

07

08 %,
05 \

04 ",

TN

02

08 06 04 G2 0 02 04 06 08

5.2.6 Mapping w =sin(z;)sin(zz) using a CNN
The Benchmark problem of mapping the surface w = sin(z,)sin(z,), actually posed for

the real variable based BPA was extended to the complex domain and posed as a

137

Benchmark for the CNN. The actual Benchmark maps a region on the xy — plane to a real
number shown plotted on the z — axis, which makes the surface plot. The map was by
definition from points on the z, plane and the z, plane with image on a third plane.
Curves were chosen on the first and second planes, the image of the map is plotted on the
w-Plane. To train the CNNs, the learning parameter was set at 0.1, the standard
parameters were set for each of the Error Functions, the architecture chosen was 1-5-1.
The networks were trained for 1500 epochs. The solid line is the actual curve and the dots

are the output of the network at twenty intermediate points.

Table 5.17 w=sin(z,)sin(z,) captured by 1-5-1, Nitta activation based CNNs. Epochs criterion was
set for the training process.

02 . .
02 L

015 . B
\< 015 B

0%7 015 Qa1 o0 [005 0.1 015 Ny
@2 Q15 01 005] 005 01 015
Bupolar Hyparbolic Emor 0 Cauchy Error
0 .
T
e AN . N

025 e AN 025 ‘\

/. BN . N\

02 A 02
015

. o1
e
R T T R T TR \

015

s8R
5
&
&
&
&
®
o
o
®
o

or
03 03
... / ™

025 - \ 03 /o =N
02 / 02 /-
015 (é

\- 015 "
01 \:. . \

A 01 \
.~ “

Y7 Gw o1 0% 0 0% o1 0% ~

138

Geman McClure Ermor

'/‘/f TN

01 0.05 o oo 0.1 015

Hyperboi Squared Erroc

03

05

02

815

01

Huber Eror
/-—s_\ o
\ 025
02
015
o1 \-
X 0,05 [0065 01 015 \
82 015 91 008] 005 01 015
Logarithmic Enar
Mean-Mean Enror
03
/ .
025 \
by
02
A 015
(]
008 ° oes o B R TR YT [] ©os o1 015
Winkowski Error o3 Ouadratic Error
~
3 025
/ ‘
02
’ 015
ot
"\
.
°}y o o1 oF [TE 01 015

139

Sinh Error

03 . Toney Smae
—~—
025 A . o o . \\
/o “\ / \,
. ,1‘
02 / 0 /
015 \ 015,
01 \\ ot
o \ 0%
B ow BT oE 6 TE 015 ? T B T S TR T
Welsch Eror
03
T
A :
035
02
015
01 ‘.
0.05
32 015 01 Q05 0 065 o1 015

Table 5.18 w=sin(z,)sin(z,) captured by 1-5-1, New activation based CNNs. Epochs criterion was

set for the training process.

Absolute Ermor Ancrew Eror
03 03
. e N
0% A 025 / N
02 .
02 /
-
0.15 018 .l
\
A
0.1 o ~\\\
BN
~
%32 0 005 0.1 0.15 00
K P T TR T o (L3 [X] 015
Bipolar Hyperbolic Emor 03 Cxetvy Emor
03
/.K\'.\ ‘/q—-—v-\\
A p .
025 \ 0% r \
*\ I \,
02 02 [
01§ 015 i
\
\
ot 01 \'\
e
0 I 15
W aw arus o em oo 03 o1 <= [] 005 01 a1s

140

Fourth Powsr Error
03 03 Fai Emor
i
- S -
N, // "-.\
02 ™
0% / N
S
A / \
A
02 02 i
f
015 015 {.
i
\
ot o1 N\
~ ~
B T T Y T T T 0% T o
0. 0.16 D2 015 ot Q08 0 005 o1 a5
03 Geman McClure Error 01 Hyperbolic Squared Error
/’/—“\\
025 ° 025
02 02 1
0.15 015 1
01 “ 01 J
X . i . L
BT o’ a1 4% [} 005 01 01§ b TR T ra—T [0 o1 0
Huber Ermor LogCash Emor
03 03
/‘—\ /‘/_\\).
025 \\ 0 \
02 02 {
015 015
01 ['A]
o
B o® BT oG 0 0% o1 0 Q7 ow o1 oE 0 9% o1 0%
03 Logwithric Error a3
0% 035
0.2 02
015 01
01 o1
Q
% 005 01 0f5 32 o1 015

141

N\ .
02

015

2]

03 03

AN o

02

0151

o}

a1 015

Walsch Eror

The errors produced by each of the CNN based networks for the mapping problems of the

present chapter are shown tabulated in Table 5.19. The errors were averaged over three

runs of the algorithms.

5.3 Conclusion

The mapping problems demonstrated in this chapter represent typical functions
encountered in practice. The results tabulated show that the CNNs capture all the
complex maps. The New Activation Function based CNNs also learned all the maps and
performed on par with the Nitta activation based CNNs. In particular, the Mean-Median

Error, Cauchy Error, Fair Error, Geman-McClure Error, Huber Error and Welsch Error

142

based CNNs with the New Activation Function performed on par with the Quadratic
Error based CNN or better. Hence in mapping applications, the standard CNN can be

replaced with the one developed over any of the other EFs listed here.

Table 5.19 Errors wi.th test data averaged across three runs. CExp is Complex Exponential Map, Exp is the
Exponential Map, BTrans is Bilinear Transformation, Polynomial and sin(z1)sin(z2) maps in that

order. Epochs have been kept fixed during training (shown bracketed in each column.)

Average Simulation Error for various Maps

Error Function Nitta Activation Function New Activation Function
CExp Exp BTrans Poly sz1s22 CExp Exp BTrans Poly szlsz2
(4000) (2500) (1500) (1500) (1500) (4000) (2500) (1500) (1500) (1500)
Absolute Error 0.0247 0.0013 0.0003 0.0005 0.0012 0.0151 0.0001 0.0011 0.0011 0.0018
Andrew Error 0.0435 0.0568 0.0212 0.0035 0.1514 0.0313 0.1167 0.1211 0.0121 0.2223
Cauchy Error 0.0047 0.0014 0.0001 0.0008 0.0001 0.0031 0.0010 | 0.0005 | 0.0003 0.0001
Error Fourth Order 0.0391 0.0307 0.0167 - 0.0017 0.0040 0.0288 | 0.0088 | 0.0089 0.0026 0.0021
Fair Error 0.0048 0.0012 0.0001 0.0002 0.0001 0.0059 | 0.0042 | 0.0003 0.0011 0.0001
Geman-McClure Error 0.0026 0.0191 0.0002 0.0014 0.0005 0.0111 0.0087 0.0001 0.0005 0.0007
Huber Error 0.0029 0.0017 0.0003 0.0006 0.0002 0.0019 | 0.0006 | 0.0002 0.0006 0.0002
Hyperbolic Squared 0.0055 0.0377 0.0100 0.0489 0.0015 0.0231 0.0305 | 0.0561 0.0551 0.0034
Bipolar Hyperbolic 0.0026 0.0419 0.0781 -| 0.0056 0.0088 0.0142 | 0.1044 | 0.0587 | 0.0149 | 0.0112
LogCosh Error 0.0088 0.0005 0.0211 0.0003 0.0622 0.0012 | 0.0008 | 0.0101 0.0002 0.0066
Logarithmic Error 2.9730 0.0253 0.5869 0.2828 0.0466 08816 | 0.0812 | 0.8979 | 02116 0.0867
Mean Median Error 0.0026 0.0011 0.0002 0.0021 0.0259 0.0011 0.0031 0.0011 0.0002 0.0033
Minkowski Error 0.0308 0.0051 0.0126 0.0023 0.0026 0.0404 | 0.0017 | 0.0091 0.0022 0.0033
Quadratic Error 0.0026 0.0003 0.0003 0.0004 0.0006 0.0008 | 0.0003 0.0001 0.0003 0.0003
Sinh Error 0.0031 0.0012 0.0003 0.0004 0.0004 0.0022 | 0.0004 | 0.0003 0.0004 0.0004
Tukey Error 0.0019 0.0006 0.0002 0.0018 0.0004 0.0082 | 0.0011 0.0001 0.0025 0.0011
Welsch Error 0.0352 0.0013 0.0100 0.0102 0.0042 0.0081 0.0029 | 0.0094 0.0088 0.0031

The table of errors reveals the different rates at which the problem solution was possible
as the EFs varied. This establishes a sequence of preference with the choice of EF so that
an optimal selection of EF could be made to suit the application at hand. Huber F unction,
Geman McClure Function, Cauchy, Tukey, Quadratic, Log Cosh and Welsch have
performed consistently well across the varied mapping problems. And hence, these
functions are recommended for other applications to replace the Quadratic Function. The
other EF based CNNs were slow on the convergence compared with the ones mentioned.
Unlike the Surface Classification Problem (Chapter 6) where some functions were not
recommended owing to their poor performance, 2ll the EF based CNNs can be applied

but the different rates of convergence should of course be considered while making a

judicious choice.

Chapter 6

Application to Surface Classification Problem

“

6.1 Introduction

The problem of classification in general refers to sorting a set of elements into categories
with predefined characteristics, in which the number of classes is usually fixed (this is
opposed to clustering problems where the number of clusters can be treated as unknown.
Moreover clustering is a constrained extremization problem (Babuska, 1998) while
classification is a problem of mapping). A mathematical approach to the same would involve
reposing the problem in terms of functions and maps. Classification from a mathematical
viewpoint is a map that assigns a fixed number to elements belonging to one set, a second
fixed number to elements of the second set and so on. Classification problem as opposed to
curve fitting is a many-to-one mapping in which the class representative is the target. The
above distinction was brought about to underline the fact that the Neural Network performs a
map be it curve-fitting (where the mapping is one-to-one) or classification (in which the map

is many-to-one).

The CNN was applied to the various benchmarks and mapping problems in the previous
chapters. It should be noted that all maps considered were one-to-one. It is essential to
establish the properties of the CNN as a classification tool so that the same can be employed
practically and reliably to many-to-one maps. In the present chapter the problem of sorting
point clouds in algebraic and transcendental types is considered. The problem is solved with
the ANN varying the Error Function. Error Functions based CNN’s were later used to address
the same problem. The results of these networks were studied from a comparative viewpoint.
6.2 Point Clouds in Practical Application

The problem of Reverse Engineering (Ingle, 1994), deals in constructing surfaces from
clouds of points. A typical problem in the area has a data set at hand obtained by running a
scanning-equipment across the object of interest. The scan must be performed in an orderly
fashion to ensure the data points are well organized (and do not appear at irregular intervals

or appear disorderly). After the operation, a point cloud of the object gets generated that is

144

next subject to further analysis. As a second step in the process, patches of surface are fit to
small sets of the data points of the cloud and the procedure repeated for sets of points in a
close vicinity. The whole point cloud gets an approximation as the surface patches can be
thought of as sewn along the boundaries. The usual method used to generate the patches is

the one that employs methods of Rational B-Splines (Farin, 1995). Polynomial functions are
also used to fit the point clouds with patches.

It is evident frqm the standard procedure employed to approach the problem that the set of
points are approximated by Rational B-Splines or Polynomials while the actual function from
with which the object was designed remains unknown. So essentially only algebraic functions
(polynomials) are employed in almost all cases to fit point clouds. It can be seen however that
the actual form of the surface if known would give a more accurate picture of the surface and
the analysis following the step more correctly placed. The analysis in question could be one
of computing stresses if the element were a machine component for example or computing
the frequency distribution if it were a vibrating part of a machine or the air-column of a
musical instrument. This aspect is usually not addressed because the approximation with
algebraic polynomials suffices for the experiment in question. As the function form of the
surface would be unknown in most cases, the best one can do is develop steps that can
provide information about what kind of function better approximates the surface — algebraic
or transcendental. The problem hence can be reposed as a problem of Classification to enable
a Neural Network based judgement. If a scheme exists by which the type of function that fits
the point cloud could be sensed, the surface approximation procedure can be bettered as an
appropriate function type can be chosen for approximating the point cloud. In fact there exist
problems that demand the correct form of the surface be known while reverse-engineering.
The following example illustrates where a classification of this sort is inevitable. The actual
surface of the saxophone (or a trumpet) is the surface of revolution of the exponentiél curve
(Fletcher and Rossing, 1995). The shape is arrived at by modeling the problem and subjecting
to variational methods of solution. Now, on approximating the surface of the instrument with
a polynomial for vibration -analysis of the air-column, the tonal quality and harmonic

distribution get dislocated as the exponential function is the optimal surface for the

instrument and hence, only a function of the type e (for some k) can be taken as the point
of start. This problem has a stringent constraint in terms of tonal quality and harmonics that
should be always met if an analysis of the harmonics based on the profile of the instrument

were to be carried out. So in general, surfaces that are optimal solutions to variational

145

problems demand the constraint of the problem be always met even while choosing an
approximation. It is clear from this example that in problems of this sort (in which the
constraint is extremely important), it becomes necessary to know the kind of approximating
function. It is here that it becomes necessary that we retain the form of the function even
while selecting functions for approximating and a polynomial form wouldn’t suit the problem
if the optimal solution were not it. In light of this fact, to address such applications as the one

projected here, a study of algebraic and transcendental based classification of surfaces is

essential.

To place the argument on a firm ground the following surfaces that arise practically at
various places are listed (from design point of view involving developing surfaces for the first
time or analysis viewpoint that typically involves studying the surface of a given object by
employing an appropriate method like stress analysis, vibration analysis). Table 6.1 shows
that transcendental surfaces occur at many places in practicé.

Table 6.1 List of Transcendental Surfaces in Practice

The asbestos sheet is a

Transcendental Surface

The profile of the godown
is the plane curve, cycloid

extended cylindrically.

146

The church bell is the
Gaussian Surface obtained
by rotatiﬁé the Gaussian
Function about the axis of

ordinates

The Clarinet is the Surface
of revolution of the
exponential curve.

The torus is the surface of
revolution of one circle

about another.

The Saxophone is the
surface of revolution of
the plane exponential
curve about the axis of
ordinates and later bent

into the shape shown.

Circular plate with a
circular bore at the
center assumes a
logarithmic surface when

an axial force acts on it

147

Cylindrical bending of
a thick plate on an

elastic foundation

Cam with a part cycloid,
part cardiode and part
sinusoidal profile with a
roller follower. The curves
that make up this cam are
transcendental in nature.

N A

Simply supported isosceles
triangle with simply
supported edges. The
deflection surface of the
buckled plate that satisfies
the boundary conditions is
shown here. The surface is
z = sin(x)sin(y).

The spiral jaw clutch is
a good example of a
transcendental surface
in practical application.

The involute profile teeth
of the spur gear is a

transcendental surface

In fact, mathematically it was proved that the set of transcendental functions is more

abundant than the set of polynomials (Lang, 1966). The problem here is reposed as a problem

of classification by constructing data sets from known algebraic and transcendental functions.
The classification stated this way implies telling apart algebraic surfaces from transcendental
surfaces. To start with, the BPA and some variants were run to train the Neural Network
architecture of appropriate size. To keep the study uniform, a 100-5-1 architecture was
chosen. A leaming rate of 0.1 was set and the Network was trained for 10000 epochs. Hence
an epochs criterion was chosen for training the network. To test the Neural Network three

sets of surfaces were constructed. Four different algorithms were used to train the Neural
Networks.

6.3 Training Surfaces

Twenty-five surfaces, shown in Table 6.2 (al)-(y1), were considered for training the first
stage of network to identify the surface type. The surface equations are also given. Surfaces
have been denoted as TrS1, TrS2,...,TrS25. These surfaces were chosen to include symmetry
(rotational, symmetry about an axis, symmetry about sectional planes) and polynomial order
up to five. Both bounded and unbounded surfaces were included in the training set (Wexler
(1962), Musili (1990), Stein (1987)). These surfaces include among the algebraic surfaces,
quadratic, bi-quadratic and quintic equations (Sommerville, 1951) while the transcendental
surfaces include functions involving sine and exponential function. Surfaces involving
product and sum of algebraic and transcendental functioms, e.g. TrS18 and TrS22,
respectively, have also been included in the training set. The other properties of the networks

were kept identical for the comparison to be facilitated.

A ten-dimensional equi-spaced vector was considered in the interval [-1,1] on the x-axis. A

similar vector was considered on the y-axis also. These points hatch out a hundred

coordinates (x,,y,)on the xy-plane (Fig. 6.1), with i taking values from 1 to 100: this is a

10x10 matrix. The points are numbered column-wise (that is, the coordinate (-1,1) is
numbéred one. The coordinate (-1,-1) is numbered 10, the coordinate (-0.7778,1) is numbered
11 while (-0.7778,-1) is numbered 20 and so on; hence (1,-1) is the hundredth coordinate in
the data vector). At each of these hundred points, z-coordinates were computed for each
surface using their governing equations. The point clouds thus generated for the twenty-five
surfaces are shown in Table 6.2 (a2)-(y2). The z-coordinates at the 10x10 matrix points were

stacked into a single vector of dimension 100x1. The data vector thus generated is normalized

i e

by dividing all entries of the vector by the magnitude of the vector joining the farthest point

in the data set. This vector constitutes one column of the 100x25 matrix, which forms the

input to the neural network.

Table 6.2 Algebraic and Transcendental Surfaces

(a2) Point Cloud ofTrS1

o
EN

o
o

(b2) Point Cloud of TrS2

(al) TrS1

=

9

(b1) TrS2

e e
EY I

L
Lol IR
i

(c2) Point Cloud of TrS3

N

GTTTTTIN
GITTIONY
%“Wﬂ‘ 0&“0 N

9

’

.&QQ\\\@ 0
PR =2 ‘

RLERREK %va %,“
!ﬂ/ﬁ%ooo 2
NANSRARYAEAN
NGAAANERE

ﬂﬂﬂﬂﬂﬂﬂ

(c1) TrS3

N
o,

%

000000

10U

+ ¥y +z? =1

X

% 9
- [
= &
o Gy
o 1)
g e
= 3
) S
=~ —
O O
+ -+~
R= g
o 5]
A oW
| e
< Q
=)
o~
F,
+
o

x

I

N
% 3
= -
= =
~~ Py
- —
< c

(£2) Point Cloud of TrS6

(f1) TrS6

(g2) Point Cloud of TrS7

(gl) TrS7

@2x" - y)(y-x)

Z=

(h1) Point Cloud of TrS8

(i2) Point Cloud of TrS9

(h1) TrS8

[(x—a)’ +y l[(x+a) + 7]

Z4=

(il) TrS9

152

1

x?+y 4z’

[} - N
n
[y i) 4
I = H
Gt Gy Gy
o Q o
o o o
=3 = =
9 kS S
O O &)
+ +2 +~
R=! g R
(@] O O
Ay Ay Ay
N S Q
o~
AN,. ~
+ +
= =
Il
N 1]
N
(o) — N
— — «.M
= = =
—~ —~ ~
— —
S = =

153

(m2) Point Cloud of TrS13

Q

£LLTTTENS o +
.\\\\\\“ »
£LLLLT

LLL AL
Cdded L
AN 0‘
AN 0‘ .

OO 0’ o
NIRRTV
NAANXN Y 8 3

9060500@9#69.@&

(02) Point Cloud of TrS15

(n2) Point Cloud of TrS14

z = sin(x) sin(y)

(ml) TrS13

In(x*+ y?)

z = exp(—x)sin(y)

Zz =

(nl) TrS14
(o1) TrS15

1Lo4

O
— [
% 7 o
= & &
1S} “ .ﬂ
o]
3 =1l o
(=) = B
3 2 g
O o 3
R=t k=
2 s :
[¢]
] P
3 3 g
o
) ot
R 2
BN - k
2 zy B
k= +
L N <
) "M o
£ = =1
17} R= =
I < @
N I ~
N i
N
= ™ ®
@ @ %
= = =
= ﬂ'lxl 7~
) S &
< p—

sin(xy + x)

z

) o
7 9 &
= = &
g = o
) b)
3 2 5
2 3 E
O & 3
g = g
g k| 5
L et
A g 2
ﬂﬂM A\/u))
~ - ~
- S S 8 q 4 —_
o~
- D
8 =
w2
+ +
Wo o~
B et
] N
N
(@)}
— 0 I
7 P 2
= - =
~ £ =
= — 7~~~
2 - B
]) 2

156

(v2) Point Cloud of TrS22

LTTTTTNS
SFIAT T
BT

L7777
VRIS
TR

TR

AR
ERRANNS

(w2) Point Cloud of TrS23

(x2) Point Cloud of TrS24

x> +sin(y?)

z

6B S G ~

T =

~ N’

+ H

Sk ~

= =

@ k=4

T n_\.v

N

N
N ey <
N N N
[75] /5] [70)
(& = =
ol = o
N ~ ~
— — —i
Z B e

157

z=ey(-2)siry)

(y1) TrS25

(y2) Point Cloud of TrS25

neural network. A hundred points were chosen because a prior analysis showed that for the

present classification, at least seventy points were required as otherwise the Neural Networks

either required unusually long training runs or required high learning rates. On the other

hand, two hundred were found to be on the excess as the weights got saturated for some

initializations without epochs progressing much. It was concluded from this study that a

minimum of seventy points was essential and a two hundred was on the high that was better

avoiding. A break-even was adopted and a hundred points were selected for modeling the

problem.

The plots of these input vectors (henceforth referred to as Surface Signatures) are given in

Fig. 6.2. Elements ‘1> and ‘-1’ were chosen as target elements for algebraic and

transcendental surfaces respectively.

1
08 4+ o+ o+ 0+ o+ ¥
08¢ * + + +
AL
o4z * + * + +
02¢f
+ + + + B +
0 b
* + + + +
02¢
+ + + - + + +
04F
06% +* + + +
08% * + * + + +
58 06 04 02 0 02 04

6

08

Fig. 6.1 Points on the xy-Plane where all the

surfaces were sampled

158

T 1 1 1] 1 1 1
1] 1 1
0.9 fm re-945 wns wa 8 W%JG W
U'? (a) TrS‘I g [b) TrS2 ? (c) TlrS3 ? (d T;s4 0 (e) T]r55
. | X :
DEW 1 "~ A : A] DWWY%WV SM m
0 G Tis6 @T 'rS7 -1 (h) T:rSB 0 (.] 159 i) Tisw
1 1 AP 1 1 ;
0fn 0 FrME-- 0 Al 0 W 0 WMM
0;) T:rSH } 0 Tr:312 J'? (m) T:IS13 } [n]TrS14 . 1 ©) 1?515
'U'?) T|r51 6 1 @TeT 1 (s) 7{51 8 ; i TiS18 1 WTe0
051t s Wls W 0
0 {u) TrS 21 0 (v) TiS22 U, (w) Tlr923 5 ®) T.r824 0 (W T1S25

Fig. 6.2 Signatures of Training Surfaces

The BPA was invoked for four architectures (i) 100-5-1 (Sigmoidal Activation Function) (if)
100-5-1 (Linear Activation Function), (iif) 100-5-5-1 (Sigmoidal Activation Function) (iv)
100-5-5-1 (Linear Activation Function). The architecture 100-5-1 was trained with the
sigmoid activation using other BPAs discussed earlier. The initial weights were kept same for
all algorithms. As expected, BPA with momentum was found to converge faster in
comparison with the standard BPA (Qian, 1999). The additional inertia term arising from the
equation of update of weights causes an accelerated convergence. The Resilient BPA is
characterized by updates in steps. The error surface has a number of minima and maxima
points but the exact number of these is specific to the architecture chosen for the problem. In
a dynamic sequence of errors as the epochs progress, there is a greater likelihood, owing to
the step update characteristic of the algorithm, of the error at a particular epoch missing the
local minimum point and hitting a point in the vicinity of the same. This might result in over
training of the network as the number of such hits depends on how the network was
initialized and a concomitantly results in a reduction in the test performance (as some weights -
saturate in the process). The update rules for each of the scaled conjugate gradient (SCG)
algorithms is identical. The difference lies in the computation of the Hessian in these update
rules. The SCG algorithm requires the computation of a conjugate direction for weight update

to avoid local minima for which the Hessian is approximated by an appropriate formula

159

(Moller, 1993). Lavenberg-Marquardt involves the computatien of the Jacobian on which the
weight update is based. As the value of the parameter y changes, LavenbergQMarquardt

scheme keeps moving towards or away from the gradient descent scheme. This results in an

accelerated or diminished rate of convergence.

6.4 Network Testing

Three sets of test surfaces were constructed. These sets are listed in Table 6.3. The first two
sets were constructed from the surface functions of the training set itself. In Set 1, surfaces
are constructed by making minor variations in the coefficients of the training surface
equations. In the second set, these variations are relatively large. The surfaces in Set 1 have
been denoted as Tst1S1, Tst1S2, etc. while those in Set 2 are denoted as Tst2S1, Tst2S2, etc.
Unlike the first and second sets, surfaces in Set 3 are constructed through different functions
(this set includes composite functions also). The surfaces in this set are denoted as Tst3S1,
Tst3S2 etc.

All the four BPAs listed in the previous section were tested with the four architectures, to
identify the first set of test surfaces. As earlier said, initial weights and target error have been
kept identical while training networks with different algorithms. The results are given in
Table 6.4. The 100-5-1 architecture with Sigmoidal Activation Function, is found to give the
best performance. The identification is correct in more than ninety percent cases and
Lavenberg-Marquardt scheme is the most accurate. The 100—5-1 architecture with Sigmoidal
Activation Function, is used further for identification of Set 2 and Set 3 surfaces. The
percentages of surfaces correctly identified through the four algorithms are gi\}en in Table
6.x. It can be observed that the identification is fairly good for the first two sets of test
surfaces. It should be noted that low percentage of correct identification for Set 3 surfaces is
due to the fact that the functions are those for which the networks have not been trained for

and that it contains composite functions as well as functions involving product of more than

two transcendental terms.

Table 6.3 Test Surfaces for the Surface Classification

161

Test Set 1 Test Set 2 Test Set 3

Surface Surface Equation Surface Surface Equation Surface Surface Equation
Tst1S1 x2/4+y2/18+zz/64=1 Tst2S1 x2164+ 321128+ 22/256 = 1 Tst3S1 z=x3+y3
Tst1S2 z=2x2+y2/8 Tst282 z=x2/4+y"/8 Tst382 z=x2/9+y2/16
Tst1S3 22 +y2/16-2% =0 Tst2S3 2 =2x2+3%/25 Tst3S3 2 =x2/4+y2/16
TSE | 2104 24 2a=1 | BOS4 | 2100 2 iear A 4m1 | TS0S4 Fmw
TstlS5 2= 050 + y7) Tsi2S5 Ty TsB3S5 2= %)
Tst1S6 2127 -22 20 Tst2S6 2= 221912, Ts356 JEREIEY
TstIST | 2x2/9+432/16-22/25=1 | TS@ST | 93279, ,2/95 ;2/25=1 | Ts387 z=xy

Tst1S8 z=@e2-y)pi2-a7) | Te2S8 2= (25" - y)(dy-x?) Tst358 z=x-x
Tst1S9 | 2= J((x-12+y2)(x+1)2+y%) | Tst289 | 2 @D+ 1Y) +yp 14 | TSS9 z=xp+x°y?
Tst1S10 ey e =5 Ts2810 | 222042113542 /5=1" | TsB3S10 z=x2+)°
TstIS11 Z=xty)2 TsS11 z=2x+y/2 Ts3S11 2=3x+y/2
Tst1S12 PP Ts2512 2= 221214 Tst3812 z=x+y) +xy
Tst1S13 z = sin(x)sin(2y) Tst2S13 z = sin(3x)sin(2y) Tst3S13 z =sinx)sin(y)sinxy)
Tst1S14 =G+ 212 Ts2S14 =P+ y2/2) TsBST |, o in(x? + %) sin()
Tst1S15 z=e *sin(y/2) LR z=e*sin(y/2) Jrst3513 z=¢ "sin(y)sin(e)
Tst1S16 2 = sin(x*)sin(y/2) Tst2516 z=sin@x)sin(y/2) Tst3516 z =sin(?)cos(y)
Tst1S17 z =sin(2x+ y*) Tst2817 Z5% sin(27c+y2 /4) Tst3517 z= Sin(x)esm(y)
Tst1S18 2 = ysin2(x/2+) Ts02S18 PR L TSBSI8 |, _ sin((x/2+ y2)sin(x)
Tst1S19 Z =sinfgy+2x) Tst2819 z=sing?® +x/4) Tst3519 z =sin(xy) +cos(xy)
Tst1520 z = sin(xy) +sin(2y) Ts2820 | ;= sin(xp/4) +sin(p?) | TSB520 |, —sing)cosg) +sing?)
Tst1S21 z =sin(x?) +sin(y?/2) Tst2821 7= Sin(zxz) +sin(yz/2) Tst3S21 | ,_ sin(c?) + sin(yz)sin(y)
TstiS22 z = x +sin(2y?) Tst2522 z =2 +sin(3y?) Ts3522 z = sin(x?)sin(y?)
Tst1S23 2 =sin(x*/2+ %) Tst2823 z=sin@?/2+*/3) Tst3823 z =sin(x*/2+y?)
Tst1524 z =sin(x/2)sin(xy) Tst2524 z =sin(x/2)sin(xy/4) Tst3524 z = sin(x/2)sin(xy?)
Tst1S25 z= e 2sin(y?) Tst2825 a2 sin(yz /4) Tst3825 z=¢ ¥ 3sin(x)

6.5 Classification Errors and Surface Signatures

The input signature, as defined previously, is crucial to the training scheme. The network gets trained
to identify surfaces on the basis of these input patterns. The signatures of all the testing surfaces
considered for study are plotted in Figs. 6.4 — 6.6. These signatures are dependent on the arrangement
of the various entries in the input matrix, i.e. a different arrangement would produce a different input

different The signatures

signature and consequently trace out a training course.

Table 6.4(a) Test performance of the100-5-1 network on each test set
('" indicates correct identification, '0' indicates incorrect identification)

Test Set 1 Test Set 2 Test Set 3
Surface GDM Res | SCG | LM Surface GDM Res | SCG | LM Surface GD Res SCG | LM
Tst1S1 1 1 1 1 Tst2S1 1 1 1 1 Tst3S1 Bl/I 1 1 1
Tst1S2 1 1 1 1 Tst2S2 0 1 0 1 Tst3S2 0 1 0 1
Tst1S3 1 1 1 1 Tst2S3 1 1 1 1 Tst3S3 1 1 1 1
Tst1S4 1 1 1 1 Tst254 1 1 1 1 Tst354 0 0 0 0
Tst1S5 0 1 0 1 Tst2S5 1 1 1 1 Tst3S5 0 0 0 0
Tst1S6 1 1 1 1 Tst2S6 0 1 0 0 Tst3S6 1 1 1 1
Tst1S7 1 1 1 1 Tst2S7 1 1 1 1 Tst387 1 1 1 1
Tst1S8 1 1 1 1 Tst2S8 1 1 1 1 Tst3S8 0 1 1 1
Tst1S9 1 1 1 1 Tst2S9 1 1 1 1 Tst3S9 0 0 0 0
Tst1S10 1 1 1 1 Tst2S10 1 1 1 1 Tst3S10 0 1 1 0
Tst1S11 1 1 1 1 Tst2S11 1 1 1 1 Tst3S11 1 1 1 1
Tst1S12 1 1 1 1 Tst2S12 1 1 1 1 Tst3S12 0 0 0 0
Tst1S13 1 1 1 1 Ts2S13 1 1 1 1 Tst3S13 1 1 1 1
Tst1S14 1 1 1 1 Tst2S14 1 1 1 1 Tst3S14 0 1 0 0
Tst1S15 1 1 1 1 Tst2S15 1 1 1 1 Tst3815 1 1 1 1
Tst1S16 1 1 1 1 Tst2816 1 1 1 1 Tst3S16 0 0 0 0
Tst1S17 1 1 1 1 Tst2817 1 0 0 0 Tst3517 1 1 0 1
Tst1S18 1 1 1 1 Tst2S18 1 1 1 0 Tst3S18 0 0 0 0
Tst1S19 1 1 1 1 Tst2819 1 0 0 0 Tst3S19 0 0 0 0
Tst1S20 1 1 1 1 Tst2S20 =1 1 1 il Tst3S20 1 0 1 1
Tst1S21 1 0 0 1 Tst2821 0 1 1 0 Tst3S21 1 0 0 1
Tst1S22 1 1 1 1 Tst2822 1 1 1 1 Tst3S22 1 1 1 1
Tst1823 1 1 1 0 Tst2523 1 0 1 0 Tst3S23 1 1 1 1
Tst1824 1 1 1 1 Tst2S24 1 1 1 1 Tst3S24 1 1 1 1
Tst1S25 1 1 1 1 Tst2825 1 1 1 1 Tst3S25 0 0 0 0
Percent 96 96 92 96 Percent 88 88 84 76 Percent 52 60 52 60

Table 6.4 ®) Performance of various backpropagation
algorithms with test surfaces of Set 1

" Percentage of Test Surfaces Correctly Identified by the Network
Arch Ach GDM- Resil Scaled LM
100-5-1 linear 84 80 76 76
100-5-1 sigmoid 92 92 92 96
100-5-5-1 linear 80 84 76 72
100-5-5-1 | stgmoid 38 80 92 84

of Figs. 6.2, and 6.5-6.6 were constructed by placing one column below another in the original
10x10 data matrix. The first set test surfaces were constructed by introducing minor variation in
the governing equation's parameters and their signatures bear similarity with those of the training
surfaces. The overall trend of these signatures remains in close vicinity with those of the training
surfaces. The second set test surfaces that were constructed with a grgater variation in the
parameter values shows a considerable deviation from the training surfaces in signatures. The

third testing set has many new algebraic functions (Tst3S1, Tst3S4, Tst3S5, Tst3S7, Tst3S8,

Tst3S9, Tst3S10, Tst3S12). In particular, surface equations Tst3S1, Tst3S10 are cubic functions
that were not a part of the training. Among the transcendental functions composite functions
(Tst3S15, Tst3S17, Tst3S18) and functions involving product of more than two transcendental
functions (Tst3S13, Tst3S15), which were not preser;t for training have been included in Set 3.

These new surfaces have completely different signatures.

1 . 2 : 4 - 1 7 1 7

DWH{M k)ULNd 2F-Ma1h- UMﬁ.S
Y i S I . T) L Y S [T

§ LTS3 B)Tss2) ()Ts@S3 | (@) Tsl384 (e TsidS5
D.S-—-T:---}U : UM UMU :
0 [Tst356 -1 [g]TitSS? 1 [h]T;T358 -1 [i]Ts:tBSS -1 mrst:ism

1 - 1 > rr4 : 5 d 1 -
D- 0 P2 &A)u;wlu UW% DWM/WW
A ; - 5 g LWL | LS LU p) M.

1 KI Tst3sTT | OTs@812 o (mTsd513 =7 [mTsdsTd ", o) Ts3518
O.5w Otes :"' OM UM UWWW
0 [p}Tslt3S18 v [u]TsE3S17 ! mrs;?sw i [s]Ts;t3S19), [mst::-xszo

1 : Y5 : 1 : 4 - 1 .

] (‘ t 1 1 1
OW- h| i%s WUWMEET’ﬂ 1] S SR
)] 1 0 1]]

Vo CwTesz O @Tess O wiwsa | pTan®
Fig. 6.3 Signatures of surfaces of Test Set 1
It is to be noted that the training set included algebraic surfaces up to the fifth order. Third order
algebraic surfaces have deliberately not been included in the training, while surfaces of all other
orders have been included (fourth, second and first). This was done in order to test if the network
thus trained would be able to generalize and identify a third order surface. Order three algebraic
surfaces have been included in Set 3 test functions (Tst3S1, Tst3S7 and Tst3S10). The test
performance reveals that a purely third order algebraic surface Tst3S1 and Tst3S7 correctly got
identified by all the networks while Tst3S10 was correctly classified by two of the four

networks.

The transcendental surfaces in the training set included various forms of sine and exponential
functions. Surfaces involving product and sum of algebraic and transcendental functions, e.g.
TrS18 and TrS22, respectively, were also employed for training. It can be seen from Table 3 that
test surfaces, Tst1S18, Tst1S22, Tst2S18 and Tst2S22 have been correctly identified by all the

four algorithms which confirms that the network learnt to sense combination functions.

164

—_

1 . 1 1

0% @I Tsi25] HU (b) Tst252 (@ Ts1253 ‘13 d Ts254

L L MG : .
05 VWLMM[WL L »F""*;“ﬁ: g ‘*fym"wy 5 WJ.? g
I ! 1 1
o o ; ? 7259

> [Ts1258 i (@ Ts1257 s (17258] D Ts12510
1 S 1] S i PO D) OO I YO
N ; ! i
D; [k]TftZSH } [I]Tslt2512 } [m]Ts.t2813 1 [n]TTt2514 I (017?2315
o of -t UWW 0f-- 4 UMAJW%W
1 1 1 1

1 i
Tst2520
; 4] s‘tzsz

@ Tst2521 WTst2522 -~ W)Tst2523 | [Ts2524 o () 752525

FITS2STE | TS, @TeEsiE

0O — 4
= k
N

Fig. 6.4 Signatures of surfaces of Test Set 2

The training set signatures of surfaces TrS5, TrS21 and TrS22, exhibit similar patterns. While
TrS5 is an algebraic surface (corresponding to a paraboloid of revolution), TrS21 and TrS22 are
transcendental surfaces, with TrS22 involving summation of algebraic and transcendental
functions. This similarity of signatures results in erroneous identification of test surfaces Tst1S5,
Tst1S21, Tst2S21, Tst1S22 and Tst2S22. Errors are found in the identification of test surfaces
Tst1S23, Tst2S23 due to similar reasons. The signature in Fig. 6.2(w), for training surface
TrS23, is the sine of the paraboloid of revolution, which is similar to that of the paraboloid
surface TrSS5. The training surface TrS23 was the sine of a regular paraboloid while all three test
surfaces (Fig. 6.3(w), Fig. 6.4(w), Fig. 6.5(w)), are sines of an elliptic paraboloid, of which the
regular paraboloid is only a particular case, i.e. the test4 surfaces are more general than the
training surface. It is evident that though networks have learnt to generalize to cases for which

they have not been trained, caution needs to be exercised in making distinction in cases where

training signatures have identical patterns.

Training surfaces TrS13, TrS24 (Figs. 6.2(m), (x)) involve product of two sine functions. It can
be seen from Table 6.3, that testing surfaces Tst1S13, Tst2S13, Tst1S24, Tst2S24, which also
similarly involve products of two sine functions, get correctly identified. In addition test surface

Tst3S13 involving product of three sine functions also gets correctly identified,

165

1 : 2 ; 4 ; 1 ; 1]
UWSﬂ sz ;)))” U\L\M ﬁsbﬁ
_1 : A) | 1
1 Lol Tst3ST .? (b) Tst352 ? (c) Tst353 : (&) Ts354 ? (e) Tst3S5
0.5 W 0 : D : /VW 0 : 0 W
? 7 T5t358 1 [g]Tst3S7 l T Tet358 ; [l]Tst339 } T30
Of--z%--1 ORI 2 WTA 0 DMA!WWW
) AN) S o] M LU)
1 (k) Tst3s11 1 () Tst3512 / m]Tsk3S]3 1 (n) Tst3514 1 (o]Tst3S15
U.SW OFcs :'"' UW—JZ UM UWNV‘A[
1 l _1 J -1 1 1

[p) Tst3516 '1 @ Ts3517 WTe3819 T BT830

1 [u) Tst3521 [V]Tsl3522 5 (w) Tst3523 . (¥) Tst3524 - [y) Tst3525

-0

() Tst3518

—

o
TJ
(8]

Fig. 6.5 Signatures of surfaces of Test Set 3

despite the network not being specifically trained to recognize such a surface: Here also, the
networks have developed generalization capabilities.

Identification of test surfaces with trained neural network for the first set was best with success
rate ranging from 92 to 96 percent. This is because the set was constructed with minor variation
in the training set parameters. The second set of surfaces had a lesser success rate with correct
identification percentage ranging between 76 and 88 percent. The third set with radically new

testing functions had a success rate between 52 and 60 percent.

1 * + * *
08} R
0.6% * * * * -+
04F
0.2% * * * * +

Or 4
0.2 * * * * +
04F .
06+ * * * * -+
08 4

- - S S T R~~~y

- 08 06 04 D2 0 02 04 0B 08B

Fig. 6.6 Points for sampling the surfaces for order determination

166

6.6 Network Robustness

For testing neural network for algebraic-transcendental classification for robustness, random
noise was introduced at all the points in the input set of the training surfaces matrix. Table 6.5
shows the comparative performances. The perturbed data set was input to the network after
training it with an unperturbed training sata. Noise ranged from one percent to five percent. The
robustness is on the decline for random noise in the five percent range while the net remained
robust for a one-percent random perturbation. The robustness of the networks trained with
resilient propagation, gradient descent with momentum and scaled conjugate gradient algorithm
are also shown for the same noise range. Gradient descent with momentum gave the best

performance.

6.7 Order Determination of Algebraic Surfaces

For surfaces classified as algebraic, order determination is the next step of the identification
process In the present study, classification up to third order algebraic polynomial has been
considered. The most general first, second and third order polynomial surfaces, which can be
expressed explicitly as z = f(x, y), are |

Table 6.5 Testing the Robustness of the Neural Network

Gradient Descent with Momentum
Percent Noise Percent Algebraic Incorrect | Percent Transcendental
Incorrect
0.1 0 0
1 0 0
2 5.7 2.56
3 13.02 6.25
5 22.5 20.77
Resilient Propagation
Percent Noise Percent Algebraic Incorrect | Percent Transcendental
Incorrect
0.1 0 0
1 3.84 3.55
2 17.23 14.36
3 30.27 25.79
5 29.86 35.87
Scaled Conjugate Gradient
Percent Noise Percent Algebraic Incorrect | Percent Transcendental
Incorrect
0.1 0 0
1 0 0
2 10.42 7.05
3 23.33 13.85
5 30.83 29.23

Lavenberg-Marquardt Algorithm
I_’ercent Noise Percent Algebraic Incorrect | Percent Transcendental
Incorrect
0.1 0 0
1 0.6 0
2 16 9.23
3 - 20.83 15.38
5 30.8 38.46
First order surface : ax+by+cz+d=0
Second order surface : = z=ax’+by’+cy+dxtey+ f

Third order surface :z =ax’ +by° +ex’y +dxy* +ex’ + i + gy + hx+ jy+k

The most general first order surface is a plane. A quadratic surface with six coefficients is the
most general second order explicit surface while a cubic surface with ten coefficients is the most

general third order explicit surface.

For order classification, 216 planes, 216 quadratic and 216 cubic surfaces were considered. The
equation of the plane can be put in the intercept form
x/ A+y/B+z/C=1

(With 4= —d/a:B=-d/b;C=-d/c 4 B Carethex, y and z intercepts respectively).

Six equi-spaced points were considered on the x, y and z axes to define 216 planes (6x6x6). Each
of the 216 planes was sampled at the thirty- six points on the xy-plane shown in Fig. 6.6. The
partiaI derivative with respect to y is computed from the 6x6 matrix. The second partial
derivative with respect to y is also computed using the 5x6 matrix giving 2 4x6 matrix. The three
matrices are put in a single column vector of size 90x1 (36+30+24). For example, with -0.8311,
0.3237, 0.0330, -0.5747, -0.0300, -0.1774, -0.5824, -0.5097, -0.9208, 0.7707 as coefficients the
- coordinates at each of the thirty-six points shown in Fig. 9, for the cubic formula (16c) can be

arranged in a 6x6 matrix as

T 4604 1.5025 1.1977 12267 12704 1.0098 |
24836 1.5712 12833 1.1657 1.0342 0.5248
22530 1.3704 1.0366 0.8636 0.5611 —0.1928
1.8930 1.0843 0.7079 0.4446 —0.0245 -1.0188
15278 0.7772 03854 0.0332 —0.5985 —1.8288
112817 0.5935 0.1905 -0.2465 ~1.0365 —2.4987 |

[z]=

168

The partial derivative with respect to y provides the following slope matrix (Halmos [29],
Hoffman [30]) of the order 5x6

(0.0232 0.0687 0.0406 —0.0610 —0.2362 —0.4850
—-0.2306 -0.1809 -0.2047 -0.3021 -0.4731 -0.7176
olz]/oy= —-0.3600 -0.3061 -0.3257 -0.4189 -0.5857 —0.8260
—-0.3652 -0.3071 -0.3225 -04114 -0.5740 —0.8101
\—0.2461 -0.1837 —-0.1949 -0.2737 -0.4380 - 0.6998)

The second derivative matrix turns out to be

—0.2538 —0.2495 -0.2453 -0.2411 -0.2369 —0.2327
—0.1295 -0.1253 -0.1210 -0.1168 —0.1126 —0.1084
—0.0052 —0.0010 0.0033 0.0075 0.0117 0.0159
0.1191 0.1233 ~ 0.1276 0.1318 0.1360 0.1402

o*[z]/ & =

The three matrices can be arranged into a single 90x1 vector by sequentially arranging the
columns of] one below the other, followed by the columns of §[z]/8y and 8*[z]/8y”. All the

data sets (for planes, quadratic surfaces and cubic surfaces) were modeled in the form given in
the example. The coefficients of the quadratic as well as cubic surfaces were randomly generated
in the interval [-1,1]. Each of the three kjnds of surfaces was sampled at the thirty-six points
shown in Fig. 6.6 and the procedure shown in the example above was applied for constructing
the data matrices. The 90x1 vectors thus constructed for each of the 216 planes, 216 quadratic
surfaces and 216 cubic surfaces were arranged into a 90x648 matrix. Fig. 6.7 shows four each of
the planes, quadratic and cubic surfaces that formed a part of the input. Fig. 6.8 shows typical
signatures of the input columns corresponding to plane, quadratic and the cubic. The target
corresponding to each of the planes was chosen as '-1', each of the quadratic surfaces had zero
and each of the cubic surfaces had a 'l' for target. The target vector hence, was of size 1x648.
For the data set thus constructed, a neural network of architecture 90-10-1 was trained. The input
matrix was normalized to —0.9 and 0.9. A bipolar sigmoidal activation function was used for all
the layers of the architecture. The network thus trained was tested with data sets constructed

following the procedure illustrated in the example above for each of the sixty-four planes,

quadratic and cubic surfaces.

Among the other approaches to the same problem, the ANN and CNN based classification
schemes based of differentlError Functions were employed. The important idea is to differentiate

and evaluate the performance of the ANN and CNN based networks. The Surface Classification

169

was also solved by Error Function based Neural Networks. The Error Functions listed in the

Chapter 3 earlier and the algorithms developed over them have been used to solve the
classification problem.

(a) Planes

(z.)i‘f'-z"'l-—z—:]_
-1 1

(ii).il+_l’__+_z____1
((21) R A .
1 02 -06

)2, 2, 2
-02 06 -02

(b) Quadratic Surfaces

(i) z=0.3328>-0.827y* —0.4889%xy—0.7145c~
0.4454y+0.5529

(#) z=0.4160x" +0.2058y* —0.9212xy+0.6914x—
0.5405y-0.0099

(#ii) z=-0.939% +0.2959y% —0.199 Ixy +0.535x -
0.2323y+0.7828

(iv) z=-0.1844x* —0.2463y* —0.823 Ixy+0.9652x -
0.8434y-0.0762

(c) Cubic Surfaces

() z=-0.737x> — 0.8581° — 0.076 x*y —0.102x” +0.8445:% +
039392 +0.5376xy+0.4702c— 03797y +0.7226

(i) z=—0.0542¢ +0.769y° +0.4673¢*y —0.82680” +04213¢* +
0.036y” +0.446xy +0.7864x —0.2073y +0.7407

(iff) z=—0.6656¢ +0.0055%° +0.160%%y —0.1363x)” - 0.1654¢” —
037972 +0.258xy+0.0157% — 0.8847 + 0.8850

(iv) 2=0.5239 +0.996y° - 0.4363%y +0.375207 — 025327 —
0.7474y% +0.1553ry+0.1743c - 0.8822y +0.5717

Fig. 6.7 Planes, Quadratic and Cubic Surfaces for Order Determination

6.8 BPA based on different Error Functions
The same twenty:ﬁve surfaces, shown in Table 6.2 (al)-(v]), were considered for training the
ANN by altering the Error Functions. The aim here is to see how well the ANN with Error

Function altered Jearns to perform the classification and generalize. The next section extends the

170

domain further by bringing CNN’s in, in which once again, the Error Functions have been varied
and CVBP’s built over them.

Planes

Quadratic o
Surfaces

Cubic
Surfaces

OF

2

: 2 ' 2 : sl
0 50 1000 5 1000 5 1000 50 100

Fig. 6.8 Typical signatures of Planes, Quadi'aﬁc surfaces and Cubic
surfaces for order determination

The data set chosen was the same. The output chosen was ‘1” for algebraic surfaces and ‘-1” for
transcendental surfaces. Two architectures, 100-5-1 and 100-10-1 were chosen for the
experiment. These were selected to maintain the uniformity in the whole experiment as in the

earlier section these architectures was chosen.

The following parameters were set for the training and testing procedure. Two different
architectures of sizes 100-5-1 and 100-10-1 were chosen. These were selected because the Back-
Propagation Algorithm with the standard Quadratic Error Function produced good results with
these. Learning rate for updating the weights was set at 0.1, bias was enabled for both hidden and
output layers with a constant input of 1. The initial weight matrices for both architectures were

kept fixed for all runs of the Back-Propagation Algorithm with different error functions.

Table 6.6 Classification based on Error Function based BPA. Network
was trained for 10000 epochs

Result with 100-5-1 Architecture :]
Algebraic (% Correct identified) Transcendental (% Correct identified)
Error Function Test1 Test2 Test3 Testl Test2 Test3
Absolute Error 83.34 83.34 25 84.62 58.33 16.67
Andrew Error 100 100 100 0 0 0
Cauchy Error 83.33 83.33 41.67 92.3 58.33 58.33
Error Fourth Order 50 5 0 100 100 100
Fair Error 91.67 83.33 50 84.62 53.85 46.15
Geman-McClure Error| 91.67 58.33 33.33 92.31 69.23 46.15
-Huber Error 91.67 83.33 3333 84.62 61.54 58.33
Hyperbolic Squared 83.33 58.33 3333 58.33 41.67 16.67
Bipolar Hyperbolic 66.67 50 41.67 92.31 58.33 16.67
LogCosh Error 83.33 83.33 50 923 46.15 69.23
Logarithmic Error 58.33 58.33 0 100 100 92.3
Mean Median Error 58.33 58.33 8.33 100 84.62 84.62
Minkowski Error 91.67 75 33.34 100 76.92 69.23
Quadratic Error 91.67 75 41.67 84.62 69.23 46.15
Sinh Error 50 50 0 100 923 923
Tukey Error 66.67 75 25 100 84.62 6923
Welsch Error 83.33 75 33.34 9231 69.23 53.85
Result with 100-10-1 Architecture
Algebraic (% Correct identified) Transcendental (% Correct identified)
Error Function Testl Test2 Test3 Testl Test2 Test3
Absolute Error 83.33 75 33.34 76.92 38.46 46.15
Andrew Error 100 100 100 0 0 0
Cauchy Error 91.67 83.33 50 9231 53.85 53.85
Error Fourth Order 41.67 41.67 0 100 100 9231
Fair Error 0 0 0 100 100 100
Geman-McClure Error| 83.33 41.67 50 92.31 46.15 16.67
Huber Error 91.67 83.33 33.33 92.31 76.92 46.15
Hyperbolic Squared 58.33 41.67 25 84.62 53.85 46.15
Bipolar Hyperbolic 66.67 58.33 16.67 76.92 3846 46.15
LogCosh Error 91.67 83.33 41.67 92.31 53.85 61.54
Logarithmic Error 58.33 58.33 833 76.92 - 84.62 84.62
Mean Median Error 91.67 83.33 50 84.62 53.85 46.15
Minkowski Error 83.33 83.33 41.67 84.62 38.46 61.54
Quadratic Error 91.67 83.33 58.33 100 46.15 46.15
Sinh Error 33.34 41.67 0 100 100 9231
Tukey Error 83.33 83.33 58.33 84.62 3846 46.15
Welsch Error 100 100 100 0 0 0

The target error was set at 0.00001. The maximum epochs were set to 10000. The activation
functions for both hidden and output layers were bipolar sigmoid. Caution was observed while
implementing Hyperbolic Sigmoid and Bipolar Hyperbolic Sigmoid Errors for which error
functions were accordingly set with Hyperbolic Sigmoid having unipolar activation and Bipolar

Sigmoid having a bipolar activation function. The training parameters set show that an epochs

criterion was preferred by assigning a larger target error than the network could achieve (that

was arrived at in a sequence of trial runs before conducting the experiment.)

174

6.8.1 Classification Result

The performance of BPA across various EF’s is displayed in Table 6.6. It is evident from the
results that a proper choice of EF can aid the training scheme by speeding the learning process or

bypassing a local minima as the case may be. The initial weights were kept identical for both

architectures during the whole experiment.

6.9 CVBP based of different Error Functions

The complex Error Function based CVBP is applied to the Surface Classification problem in the

present section.

6.9.1 The Complex-Variable Based Algorithm
The architectures 100-5-1, 100-10-1 were trained with the Nitta activation using the CVBPs

based on the error functions described. The initial weights were kept same for all the ‘tIaining

algorithms, the learning rate set was at 0.1.

Table 6.7 Test performance of complex network on each test set. al is 100-5-1
a2 is 100-10-1, a3 is 100-15-1, a4 is 100-20-1.
('1" indicates correct identification. '0' indicates incorrect identification)

Test Set 1 Test Set 2 Test Set 3
Surface al a2 a3 a4 Surface al a2 a3 ad Surface al a2 a3 a4
Tst1S1 1 1 1 1 Tst2S1 1 1 1 1 Tst3S1 1 1 1 1
Tst1S2 1 1 1 1 Tst2S2 0 1 0 1 Tst3S2 0 1 0 1
Tst1S3 1 1 1 1 Tst2S3 1 1 1 1 Tst3S3 1 1 1 1
Tst1S4 1 1 1 1 Tst2S4 1 1 1 1 Tst3S4 [4] 0 0 0
Tst1S5 0 0 0 (4] Tst2S5 1 1 1 1 Tst3S5 0 0 0 1
Tst1S6 1 1 1 1 Tst2S6 0 0 0 0 Tst3S6 1 1 1 1
Tst1S7 1 1 1 1 Tst2S7 1 1 1 1 Tst3S7 1 1 1 1
Tst1S8 0 1 0 1 Tst2S8 0 1 0 1 Tst3S8 1 0 0 0
Tst1S9 1 1 1 1 Tst2S9 1 1 1 1 Tst3S9 0 0 0 1
Tst1S10 1 1 1 1 Tst2S10 1 1 1 1 Tst3S10 0 1 0 1
Tst1S11 1 1 1 1 Tst2S11 1 0 1 1 Tst3S11 1 0 1 0
Tst1S12 1 0 1 1 Tst2S12 1 0 1 1 Tst3S12 0 0 0 0
Tst1S13 1 1 1 1 Tst2S13 1 1 1 1 Tst3S13 1 1 0 1
Tst1S14 1 1 1 1 Tst2S14 1 1 1 1 Tst3S14 0 0 1 0
Tst1S15 1 1 1 1 Tst2S15 1 1 1 0 Tst3S15 1 1 0 1
Tst1S16 1 1 1 1 Tst2S16 1 1 1 1 Tst3S16 0 0 1 0
Tst1S17 1 1 1 0 Tst2S17 0 1 0 0 Tst3S17 0 1 1 0
Tst1S18 1 1 1 1 Tst2S18 1 0 1 0 Tst3S18 0 0 0 0
Tst1S19 0 1 1 0 Tst2S19 0 1 0 0 Tst3S19 0 0 0 0
Tst1S20 1 1 1 1 Tst2S20 1 1 1 1 Tst3S20 1 0 1 1
Tst1S21 0 1 1 0 Tst2S21 0 0 0 0 Tst3S21 1 0 1 1
Tst1S22 1 1 1 1 Tst2S22 1 0 1 0 Tst3S22 1 1 1 1
Tst1S23 1 1 1 1 Tst2823 1 0 1 1 Tst3S23 1 1 1 1
Tst1S24 1 1 1 1 Tst2S24 1 0 1 0 Tst3S24 1 1 1 0
Tst1S25 1 1 1 1 Tst2825 1 1 1 1 Tst3S25 0 1 0 0
Percent 84 92 92 84 Percent 76 68 76 72 Percent 52 52 52 56

173

. Table 6.8 Classification based on Error Function based CVBP (Nitta activation).
Training was performed for 10000 epochs.

Result with 100-5-1 Architecture
Algebraic (% Correct identified) Transcendental (% Correct identified)
Testl Test2 Test3 Testl Test2 Test3
Absolute Error 58.33 58.34 16.67 92.31 69.23 84.62
Andrew Error 0 0 0 100 100 100
Cauchy Error 91.67 100 41.67 100 76.92 46.15
Error Fourth Order 100 91.67 66.67 92.31 46.15 3846
Fair Error 91.67 91.67 41.67 100 69.23 46.15
Geman-McClure Error| 100 100 100 0 0 0
Huber Error 91.67 83.34 41.67 100 69.23 46.15
Hyperbolic Squared 91.67 83.34 41.67 100 69.23 53.85
Bipolar Hyperbolic 91.67 91.67 41.67 100 69.23 53.85
LogCosh Error 66.67 58.34 16.67 100 92.31 84.62
Logarithmic Error 0 0 0 100 100 100
Mean Median Error 91.67 91.67 41.67 100 76.92 53.85
Minkowski Error 83.34 66.67 50 92.31 53.85 23.08
Quadratic Error 91.67 83.34 41.67 100 69.23 46.15
Sinh Error 91.67 83.34 41.67 100 69.23 46.15
Tukey Error 83.34 58.34 33.34 92.31 69.23 61.54
Welsch Error 58.34 58.34 25 100 76.92 61.54
Result with 100-10-1 Architecture
Algebraic (% Correct identified) Transcendental (% Correct identified)
Testl Test2 Test3 Testl Test2 Test3
Absolute Error 50 50 16.67 92.31 69.23 69.24
Andrew Error 91.67 100 100 61.54 84.62 7.69
Cauchy Error 91.67 83.34 41.67 92.31 76.92 53.85
Error Fourth Order 83.34 83.34 50 76.92 69.21 53.85
Fair Error 83.34 91.67 50 92.31 76.92 38.46
Geman-McClure Error 75 58.34 33.34 84.62 76.92 53.85
Huber Error 83.34 91.67 50 92.31 76.92 38.46
Hyperbolic Squared 75 58.33 41.67 92.31 69.23 53.85
Bipolar Hyperbolic 75 58.34 33.34 100 69.21 69.23
LogCosh Error 83.34 83.34 33.34 61.54 61.54 15.38
Logarithmic Error 0 0 0 100 100 100
Mean Median Error | 91.67 91.67 41.67 92.31 61.54 69.23
Minkowski Error 66.67 66.67 25 100 76.92 53.85
Quadratic Error 66.67 66.67 25 100 84.62 53.85
Sinh Error 83.34 75 41.67 92.31 69.23 53.85
Tukey Error 83.34 75 33.34 92.31 69.23 53.85
Welsch Error 66.67 66.67 8.34 100 69.23 61.53

A large target error was purposely set so that the problem can be modeled in térms of an epochs
criterion. All the update rules listed in the Appendix 1 have been used to train the CNN’s. The
resﬁlts are displayed in Table 6.8 (Nitta Activation) and Table 6.9 (new Activation). It can be
seen that the New Activation based CNN’s performed on par with Nitta’s or better with the third

set of test surfaces.

6.10 Some Remarks

A few observations are in order. First, it must be noted that the architectures of the CNN are also
chosen to be 100-5-1 and 109-10—1. In fact the number of variables a compilex number can
accommodate are double that an ANN can take (as each complex number is dimension two with
respect to the set of Real numbers). But as the airp of the present work was to compare the CNN
and the ANN maintaining the parameters constant, hence the architectures have been chosen
identical. If by some scheme, the size of the CNN were reduced (by coupling some inputs for
example) the geometry of the problem gets distorted and the complex input vector will not mean
what it actually means in the construction. In fact, if the scheme in question had reduced the
architecture of the CNN to a 50-5-1 network, the space-complexity of the CNN would still be

higher than the ANN as the number of variables would be 522 in number (weights and biases =

2(250+5+5+1)=522, assuming the architecture is 50-5-1) compared with 511 (500+5+5+1=511)

in the case of ANN (with architecture 100-5-1). The input neurons to the CNN in the present

problem have purely real inputs and the imaginary parts have no signal in them. This is justified

because the CNN can take real inputs as a particular case of complex inputs. The stand taken

hence is fully justified. Second, there is no criterion by which one can ascertain if a certain

problem gets better solved with the CVBP than with the standard BPA (Nitta, 1991). The fact

Table 6.9 Classification based on Error Function based CVBP (New activation).
Training was performed for 10000 epochs.

Result with 100-5-1 Architecture]

Algebraic (% Correct identified) Transcendental (% Correct identified)

Testl Test2 Test3 Testl Test2 Test3

Absolute Error 58.33 46.15 25 84.62 61.54 69.23
Andrew Error 25 25 833 76.92 53.85 38.46
Cauchy Error 91.67 91.67 50 92.31 76.92 ~53.85
Error Fourth Order 91.67 75 5833 92.31 46.15 46.15
Fair Error 83.33 58.33 50 76.92 69.23 53.85
Geman-McClure Error| 83.33 75 58.33 61.54 46.15 30.77
Huber Error 91.67 75 41.67 84.62 61.54 53.85
Hyperbolic Squared 75 66.67 33.34 9231 61.54 46.15
Bipolar Hyperbolic 83.33 91.67 50 9231 46.15 38.46
LogCosh Error 66.67 66.67 25 84.62 84.62 38.46
Logarithmic Error 25 833 833 84.62 23.08 23.08
Mean Median Error 91.67 75 3334 83.33 84.62 46.15
Minkowski Error 83.34 58.33 50 9231 53.85 23.08
Quadratic Error 91.67 83.34 41.67 100 69.23 46.15
Sinh Error 91.67 83.34 41.67 100 69.23 46.15
Tukey Error 83.34 58.34 3334 92.31 69.23 61.54
Welsch Error 58.34 58.34 25 100 76.92 61.54

Result with 100-10-1 Architecture

Algebraic (% Correct identified) Transcendental (% Correct identified)

Testl Test2 Test3 Testl Test2 Test3

Absolute Error 50 50 16.67 9231 69.23 69.24
Andrew Error 91.67 100 100 61.54 84.62 7.69

175

Cauchy Error 91.67 83.34 41.67 92.31 76.92 53.85
Error Fourth Order 83.34 83.34 50 76.92 69.21 53.85
Fair Error 83.34 91.67 50 9231 76.92 38.46
Geman-McClure Error| 75 58.34 33.34 84.62 76.92 53.85
Huber Error 83.34 91.67 50 92.31 76.92 38.46
Hyperbolic Squared 75 58.33 41.67 92.31 69.23 53.85
Bipolar Hyperbolic 75 58.34 33.34 100 69.21 69.23
LogCosh Error 83.34 83.34 33.34 61.54 61.54 15.38
Logarithmic Error 0 0 0 100 100 100
Mean Median Error | 91.67 91.67 41.67 92.31 61.54 69.23
Minkowski Error 66.67 66.67 25 100 76.92 53.85
Quadratic Error 66.67 66.67 25 100 84.62 53.85
Sinh Error 83.34 75 41.67 92.31 69.23 53.85
Tukey Error 83.34 75 33.34 92.31 69.23 53.85
Welsch Error 66.67 66.67 8.34 100 69.23 61.53

still stands and the present problem of Surface Classification was chosen as a case to study the
classification of surfaces as stated. The results of this do not generalize to all problems of
classification. Therefore, there can exist classification problems in which the CVBP outperforms

the BPA and there can be cases in which the result would be otherwise.

6.11 Conclusion
The results clearly indicate that altering the Error Function can be significant as some networks

were found to perform on par with the standard Quadratic Error Function based networks, while
some displayed sensitivity to activation. This clearly indicates that'an optimal choice in terms of
EF and Activation Function would yield better result with the problem. With practical data prone
to errors a proper choice of Error Function and a Neural Network algorithm built over this can
lead to a better network design than retaining the standard Quadratic Error Function based ANN
designs. The Error Function based CNN have also exhibited a similar performance for the
present problem of classification. This establishes that Error Function together with Activation

Function is indeed a parameter that can be varied to advantage while practically applying Neural

Networks.

Chapter 7

Conclusion and Scope for Future Work
o

7.1 Summary

The work presented in the thesis was an attempt to explore the CVBP. The stress was laid
on its performance when the Error Function is varied, on how it performs as a
classification tool and how some complex valued functions can be mapped. The thesis
generalizes the existing Benchmarks listed for the ANN to a form that can accommodate
the complex error and be operational in the complex domain and yet retain the functions
involved in the mapping. These Benchmark problems have been used as platforms of
comparison when the CVBP was evaluated against the BPA and some of its variants.
Depending on the results, the Efs have been segregated as good ones, mediocre ones and
accordingly recommended or not recommended for replacing the standard Quadratic EF.
Some intricate points as to how certain of the EFs could be brought into a useful for to

suit the application have also been stated.

The thesis emphasizes an Error Function based approach to data analysis. A few attempts
have been reported in literature in this directidn from a Neural Network viewpoint. In the
present study, not only have most Error Functions employed been studied by developing
BPA over each of them but also extended to the complex domain to train CNN forming a
wider spectrum of Error Function based Neural Networks. The Error Function echelon
formed after the runs using the Benchmarks could be used to develop an Error Function

based training and simulation sequence for the new problem at hand.

The study revealed that singular points of the CAF is critical and determines whether the
choice of architecture and activation can solve a specific problem. The fact was

demonstrated for the Haykin Activation function that had countably many singular points

177

on the axis of ordinates. In a series of experiments with the Haykin Activation
experiment concluded that during the run of the algorithm, some complex numbers fell in
a close vicinity of the singular points of the activation function resulting in jolts in the
convergence pattern. The other CAFs employed in literature were studied from this
viewpoint and a new one was put forth (that was independent of singular points) that
converged better than the existing one when applied to the Benchmarks and classification

proBlem discussed.

The CNN’s performance as a classification tool was studied by applying the Error
Function based networks to the problem of sorting three-dimensional point clouds into
Algebraic and Transcendental types. The problem is significant to applications where
approximating with polynomials is not appropriate (for instance for analyzing the
vibrating air-column of trumpet, approximating the instrument’s surface with a
polynomial offsets the location of nodes and anti-nodes of the air-column resulting in a
diminished tonal quality) as the conétraint on the problem is of paramount importance.
The standard BPA over different Error Functions as well as CVBP over Error Fupctions
were applied to solve the problem. It was observed that for the third set of test surfaces
(that had surfaces not considered for training) the CVBP based CNNs performed better

leading to the conclusion that the CNN can be useful when applied to new situations.

7.2 Scope f(;r Future Work

In most research conductéd on the CVBP, the learning constant employed was real
valued. In principle however, a complex learning constant could be employed. As a
ramification, the forms of the update rules for the real and imaginary parts of the weights
separately would be different from the usual resulting in a new set of update equations in
which the real and imaginary of the complex learning rate appear coupled. The following
steps indicate how the problem of complex learning rate could be modeled. The update

rule however remains intact in this case except of course the learning rate 7 is complex

(7.1)

wy(n+1) =w;(n)+71 ow. (n)

178

(E is the Error Function employed) which on breaking into real and imaginary parts
assumes the following form

OE 7 OE
awij (n) ’ awy‘/ (n)

Wir(n+1)= Wi (1) + (1,) (7.2a)

OF oF
B, (1) +17, Y (n)) : (7.2b)

Wy (n+1) =wy, (n) +(n,

separately for the real and imaginary parts. It must be noted that a theoretical framework
for an investigation of the sort just described must be carried out to start with. That is, a
Learning Convergence Theorem must be developed for the case of complex learning rate
so the CNNs with complex learning parameters could be studied and later applied. As the
rules of update are coupled, the increment of the real part is influenced by the partial
derivative of the imaginary part and vice-versa. This characteristic is unlike the CNN
with real learning rate where no éoupling existed in the update rules. Another interesting
fact is.the imaginary part of the complex leamning constant can be used as a control
parameter which when improvised suitably can prove useful. A single real leaming
parameter was sufficient to train the CNN with the CVBP. As the imaginary part of the
complex learning rate 7, is the parameter that couples the update rules, making the
parameter very small would get back the real learning constant case while a larger 7,

would update the weights using the complex learning constant. The description justifies
the statement earlier made in this paragraph about the controllability property the
complex learning rate can induce into the CVBP. These aspects can be researched into

from the viewpoint of Error Functions the present thesis reports.

To accelerate the training process using the BPA, a momentum term is added that acts a
force term (Qian, 1995) and enhances the speed of learning. No momentum term has
beeﬁ reported to the CVBP till date. It is not clear how a momentum term functions while
training CNNs using the CVBP. The update rule takes the following form in the presence

of the momentum term

180

%
Z(Teiz_)) (7.5)

which could be another way of implementing the Geman-McClure function. Clearly the
ANN and CNN designs based on composing the functions this way would be different.
It is not clear at this time if this scheme would be inferior or superior to the one used in

the thesis.

Another point that could be a research direction is to estimate how much bias would be
required for performing the input-output map in question. It was observed in some
simulations that on tripping the bias connection away, the BPA training progressed well
and in fact designed- a network that gave satisfactory performance, while, on the other
hand, ‘tripping all the bias connections does not solve the problem as the BPA loses its
faculty to capture the non-linearity of the data. So a break-even must exist that specifies a

minimal bias that suffices for the given data. This aspect can also be researched into.

Needless to say that a performance of the CVBP could be studied by conducting all the
runs in a batch-mode and pattern mode training schemes separately for all the directions
listed above. Pruning algorithms could be developed for CNNs. Recurrent CNN’s could
be developed and a Kalman-type approach (Haykin, 1994) for CNNs could be worked
out. It is evident in fact that all the concepts of the ANN can be re-worked addressing the
CNN. The thesis took a computational approach and EFs have been studied and
validated. |

Bibliography

Abramowitz, M. and Stegun, I. A! (Eds.), 1972, “Fresnel Integrals,” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover.

Ahlfors, L.V., 1979, “Complex Analysis: An Introduction to the Theory of Analytic
Functions with one Complex Variable,” McGraw-Hill, New York.

Aihara, K., Takabe, T., Toyoda, M., 1990, “Chaotic Neural Networks,” Physics Letters
A, vol. 144, no. 6/7.

Amari, S., 1967, “A Theory of Adaptive Pattern Classifiers,” IEEE Trans. On Electronic
Computers, EC-16(3), pp 299-307.

Amir, A., Chuanyi Ji, 1997, “How Initial Conditions Affect Generalization Performance
in Large Networks,” IEEE Transactions on Neural Networks, vol. 8, no. 2, pp.
448-451.

Andrew, R.W., 1994, “Functional Approximation by Feed Forward Networks: A Least
Squares Approach to Generalization,” IEEE Transactions on Neural Networks,
vol. 5, no. 3.

Armstrong, M.A., 1983, “Basic Topc;logy,” Springer-Verlag, New-York.

Artin, M., 1991, “Algebra,” Englewood-Cliffs, NJ.

Askill, J., 1979, “Physics of Musical Sounds,” D. Van Norstrand Company, NY.

Babuska, R., 1998, “Fuzzy Modelling for Control,” Kluwer Academic Publishers.

Battiti, R., 1992, “First and Second Order Methods for Leamning: Between Steepest
Descent and Newton-Raphson Method,” Neural Computation, vol. 4, No. 2, pp.
141-166.

Beale, E. M. L., 1972, “A Derivation of Conjugate Gradients,” F. A. Lootsma, ed.,
Numerical Methods for Non-linear Optimization, London: Academic Press.
Benvenuoto, N and Piazza, F., 1992, “On the Complex Back-Propagation Algorithm,”

IEEE Trans. on Signal Processing, Vol. 40, No. 4, pp. 967-969, April.

Berg, R. E., and Stork, D. G., 1982, “The Physics of Sound,” Prentice-Hall, Englewood-
Cliffs, NJ.

Bold, B., 1982, “The Problem of Squaring the Circle,” New-York, Dover.

182

Bose, N.K. and Liang, P., 1996, ‘“Neural Network Fundamentals with Graphs,
Algorithms and Applications,” McGraw-Hill International Editions.

Brent, R. P., 1973, “Algorithms for Minimization without Derivatives,” Englewood
Cliffs, NJ: Prentice-Hall.

Brown, J.W. and Churchill, R.V., 1996, “Complex Variables and Applications,” Sixth
Edition, McGraw-Hill Inc.

Charalambous, C., 1992, “Conjugate Gradient Algorithm for Efficient Training of Neural
Networks,” IEEE Proceedings, vol. 139, No. 3, pp. 301-310.

Chen, S., Cowan, C. F. N., and Grant, P. M., 1991, “Orthogonal Least-Squares Learning
Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural
Networks, vol. 2, no. 2, pp. 302-309.

Chun-Shin, L., Chen-Kuo Ki, 2000, “A Sum-of Product Neural Network (SOPNN),”
Neurocomputing, vol. 30, pp. 273-291.

Churchill, R. V., Brown, J., 1993, “Complex-Variables‘and Applications,” 6" Edition,
McGraw-Hill, NY.

Clarke, T.L., 1990, “Generalisation of Neural Networks to the Complex Plane,” Proc.
IJCNN, San Diego, June.

Clarke, E., Dewhurst, K., 1972, “An Illustrated History of Brain Function,” Berkeley,
University of California Press.

Dagli, C. H., 1994, “Artificial Neural Networks for Intelligent Manufacturing,” Chapman
and Hall, UK.

Dai, H., MacBeth, C., 1997, “Effects of Learning Parameters on Leaming Procedure and
Performance of a BPNN,” Neural Networks, vol. 10, no. 8, pp. 1505-1521.
Deville, Y., 1993, “A Neural Network Implementation of Complex Activation Function

for Digital VLSI Neural Networks,” Microelectronics journal, vol. 24, pp. 259-
262. -

Dodge, Y., 1987, “Statistical Data Analysis based on the L; Norm and Related Methods,”
North-Holland, Amsterdam.

Eargle, J. M., 1990, “Music Sound and Technology,” Van Nostrand Reinhold, NY.

Fahlman, S. E., Lebiere, C., 1990, “The Cascade-Correlation Learning Architecture,”

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

183

Farin, G., 1995, “NURB Curves and Surfaces: From Projective Geometry to Practical
Use,” K.A. Peters, Wellesley, Massachussetts.

Fernandez, B., 1991, “Tools for Artificial Neural Networks Learning,” Intelligent
Engineering Systems through Artificial Neural Networks (eds. C.H.Dagli, S.R.T.
Kumara, Y.C.Shin), 69-76, ASME Press, New York.

Finger, S, 1994, “Origins of Neuroscience,” New York, Oxford University Press.

Finger, S., 2000a, “Minds behind the Brain: A History of the Pioneers and Thei_r
Discoveries,” New York, Oxford University Press.

Fischer, A., Manor, A., 1999, “Utilizing Image Processing Techniques for 3D-
Reconstruction of Laser-Scanned Data,” Annals of the CIBR vol 18, pp 323-331.

Fletcher, N. H., Rossing, T. H., 1995, “The Physics of Musical Instruments,” Springer-
Verlag, Third Edition.

Folland, G. B., 1996, “Introduction to Partial Differential Equations,” 2 Edition,
Princeton, NJ: Princeton University Press.

Francois, C.B., Chauvet, G., 1992, “Stable, Oscillatory and Chaotic Regimes in the
Dynamics of Small Neural Networks with Delay,” Neural Networks, vol. 5, pp.
735-743.

Gelfand, I. M., Fomin, S. V., 1963, “Calculus of Variations,” Prentice-Hall, Englewood
Cliffs.

Georgiou, G. M. and Koutsougeras, C., 1992, “Complex Domain Back-Propagation,”
IEEE Trans. on Circuits and Systems — II: Analog and Digital Signal Processing,
vol. 39, no.5, May. |

Gill, P. E. and Wright, M. H., 1981, “Practical Optimization,” Academic Press.

Gross, C.G., 1998, “Brain, Vision, Memory. Tales in the History. of Neuroscience,”
Cambridge, MIT Press.

Guarnieri, S., Piazza, F., 1999, “Multilayer Feedforward Networks with Adaptive Spline
Activation Function,” IEEE Transactions on Neural Networks, vol. 10, no. 3.

Gueziec, A., 1999, “Locally Toleranced Surface Simplification,” IEEE Transactions on
Visualization and Computer Graphics, vol. 5, no. 2, April.

Halmos, P. R., 1974, “Finite Dimensional Vector Spaces,” Springer-Verlag.

184

Hampel, F.R., Ronchetti, Rousseeuw, J.P, Stahel, W.A., 1986, “Robust Statistics”, Wiley
Series in Probability and Statistics, John Wiley & Sons, New-York. |

Hagan, M.T., Menhaj, M., 1994, “Training Feed-Forward Networks with the Marquardt
Algorithm,” IEEE Trans. on Neural Networks, Vol. 5, No. 6, pp 989-993.

Hartshorne, R., 1997, “Algebraic Geometry,” Springer-Verlag, New York.

Hassoun, M., 1995, “Fundamentals of Artificial Neural Networks,” Prentice-Hall of
India.

Haykin, S., 1994, “Neural Networks: A Comprehensive Foundation” Macmillan College
Publishing Company, New York.

Hinton, G. E., McClelland, J. L., Rumelhart, D. E., 1986, “Distributed Representations.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations,” MIT Press, Cambridge, Massachusetts.

Hirose, A., 1992, “Dynamics of Fully Complex-Valued Neural Networks,” Electronics
Letters, 28, pp. 1492-1494. '

Hoffman, K. and Kunze. R., 1971, “Linear Algebra,” Englewood Cliffs, Prentice Hall,
NIJ.

Huang, G. B., Babri, H. A., 1998, “Upper Bounds on the Number of Hidden Neurons in
Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions,”
IEEE Trans. on Neural Networks, vol. 9, no. 1, pp. 224-233.

Huber, P.J., 1981, “Robust Statistics,” NY: Wiley. ‘

Hui, K.C., and Li Yadong, “A Feature-Based Shape Blending Technique for Industrial
Design,” Computer Aided Design, vol. 30, No. 10, pp. 823-834.

Ingle, K.A., 1994, “Reverse Engineering,” McGraw-Hill, New York.

Ishi, S., Fukumizu, K., Watanabe, S., 1996, “A Network of Chaotic Elements for
Information Processing,” Neural Networks, vol. 9, no. 1, pp. 25-40.

Jha, K., Gurumoorhty, B., 2000, “Automatic Propagation of Feature Modification Across
Domains,” Computer-Aided Design, vol. 32, pp 691-706.

Jochem, T.M., Pomerleau, D.A., Thorpe, C.E., 1995, “Vision-Based Neural Network
Road and Intersection Detection Transversal,” IEEE Conference on Intelligent
Robots and Systems, August 5-9, Pittsburgh, Pennsylvania, USA.

Jolliffe, 1. T., 1986, “Principal Component Analysis,” New York, Springer-Verlag.

185

Joris, S.M. Vergeest, Sander, S., Hovarth, I, Jos J.O. Jelier, 2000, “Matching 3D
Freeform Shapes to scanned Objects,” Proc. of DETC'00, ASME 2000 Design
Engineering Technical Conferences And Computers and Information in
Engineering Conference, Baltimore, Maryland, September 10-13.

Kamin, U. D., 1990, “A Simple Procedure for Pruning Backpropagation Trained
Networks,” IEEE Trans. on Neural Networks, vol. 1, no. 2.

Kazuyuki, S., 1996, “A Tutorial Review on Bioprocess Systems Engineering,”
Computers chem. Emgmg, vol 20, no. 6/7.

Kim, M.S. and Guest, C.C., 1990, “Modification of Back-Propagation for Complex-
Valued Signal Processing in Frequency Domain,” IJCNN Int. Joint Conf. Neural
Networks, pp. IIl - 27 —III— 31, June.

Kolmogorov, A.N., 1957, “On the Representation of Continuous Functions of Several
Variables by Superposition of Continuous Functions of One Variable and
Addition,” Doklady Akademii Nauk USSR, vol. 114.

Kreyszig, E., 1998, “Advanced Engineering Mathematics,” 8™ Edition, John Wiley and
Sons, NY. _

Krishna, K. M., Kalra, P. K., 2000, “Perception and Remembrance of the Environment
during Real-time Navigation for a Mobile Robot,” accepted for publication in
Robotics and ‘Autonomous Systems, Elsevier.

Lang, S., 1966, “Introduction to Transcendental Numbers,” Addison-Wesley Publishing
Company.

Lang, K. J., Witbrock, M. J., 1988, “Learning to tell Two Spirals Apart,” Proceedings of
the Connectionist Models Summer School, edited by D. Touretzky, G. Hinton,
and T. Sejnowski, Morgan Kaufmann, San Mateo, CA., pp. 52-59.

Lee In-Kwon, 1998, “Curve Reconstruction from Unrecognized Points,” Computer Aided
Geometric Design, vol. 17, 161-177 Elsevier Science Ltd.

Leung, H. and Haykin. S., 1991, “The Complex Back-Propagation Algorithm,” IEEE
Trans. On Signal Processing, Vol. 39, No. 9, September.

LiMin Fu, 1994, “Neural Networks in Computer Intelligence,” McGraw-Hill

International Editions, New york.

186

LCippman, R. P., 1987, “An Introduction to Computing with Nets,” IEEE ASSP
Magazine.

Liu Xiaodong, “CFACA: Component Framework for Feature based Design and Process
Planning,” Computer-Aided Design, vol. 32, pp 397-408.

Marshall, L.H., Magoun, HW., 1998, “Discoveries in the Human Braih,” Totowa,
Humana Press.

Massey, W. S., 1991, “A Basic Course in Algebraic Topology,” Springer-Verlag, NY.

Matsuoka, K., & Yi, J., 1991, “Backpropagation based on the Logarithmic Error Function
and Elimination of Local Minima,” Proceedings of the International Joint
Conference on Neural Networks, Singapore, 2, pp 1117-1122.

Minsky, M, Papert, S., 1969, “Perceptrons: An Introduction to Computational
Geometry,” MIT Press, Cambridge, Massachussetts.

Mirchandani, G., Cao, W., 1989, “On Hidden Nodes for Neural Networks,” IEEE
Transactions on Circuits anid Systems, vol. 36, no. 5, pp. 661-664.

McCulloch, W. S., Pitts, W. H., 1943, “A Logical Calculus of Ideas Immanent in
Nervous Activity,” Bulletin of Mathematical biophysics, vol. 5.

Moller, M. F., 1993, “A Scaled Conjugate Gradient Algorithm for Fast Supervised
Learning,” Neural Networks, vol. 6, pp. 525-533.

Musili, M., 1990, “Analytical Solid Geometry,” Narosa Publishing House, New Delhi.

Nitta, T., 1994, “Decision Boundaries of the Complex Valued Neural Networks,” INNS
World Congress on Neural Networks, San Diego, vol. 4, pp. 727-732.

Nitta, T., 1995, “A Quarternary Version of the Backpropagation Algorithm,” Int.
Conference on Neural Networks, Perth, vol. 5, pp. 2753-2756.

Nitta. T., 1997, “An Extension of the Back-Propagation Algorithm to Complex
Numbers,” Neural Networks, Vol. 10, No. 8, pp 1391-1415.

Ooyen, V., Nienhaus, 1992, “Improving the Convergence of Backpropagation
Algorithm,” Neural Networks, vol. 5, pp. 465-571.

Phelan, R. M., 1962, “Fundamentals of Mechanical Design,” McGraw-Hill Book

Company, NY.

187

Qian N, 1999, “On the momentum term in Gradient Descent learning schemes,” Neural
Networks 12, pp145-151.

Rey, W. J. J, 1983, “Introduction té Robust and Quasi-Robust Statistical Methods,”
Springer-Verlag, Berlin.

Rose, F.C., Bynum, W.F., 1982, “Historical Aspects of Neurosciences. Afestschrift for
Macdonald Critchley,” New York, Raven Press.

Rudin, W., 1976, “Principles of Mathematical Analysis,” McGraw-Hill.

Rudin, W., 1986, “Real and Complex Analysis,” McGraw-Hill.

Salmon, G., Reginald, A.P., 1965, “A Treatise Aon Analytic Geometry of Three
Dimensions,” Chelsea Publishing Company, New-York.

Siegel, C. L., 1965, “Transcendental Numbers,” Chelsea, New York.

Sinha, M., Kalra, P.K., Kumar, K., 2000, “Parameter Estimation using Compensatory
Neural Network,” Sadhana, Vol. 25, 2; pp. 193-203.

Sinha, M., Kumar, K., Kalra, P.K., 2000a, “Some new Neural Network Architectures
with Improved Learning Schemes,” Softcomputing, Springer-Verlag, 4, pp. 214-
223.

Smith, M. R., Hui, Y., 1997, “A Data Extrapolation Algorithm Using a Complex Domain
Neural Network,” IEEE Transactions on Circuits and Systems — II: Analog and
Digital Signal Processing, vol. 22, no. 2.

Sommerville, D.M.Y., 1951, “Analytical Geometry of Three Dimensions,” Cambridge,
At the University Press, Cambridge.

Spotts, M. F., 1985, “Design of Machine Elements,” Third Edition, Prentice-Hall India,
New Delhi.)

Stein, S., 1987, “Calculus and Analytic Geometry,” McGraw-Hill International Editions,
Fourth Edition, New York, |

Tim, H.J.J.V.D.H, 1992, “The Scaling Parameter of the Sigmoid Function in Artificial
Neural Networks,” Nuclear Technology, vol. 106. '

Timoshenko, S. P., Young, D. H., 1988, “Engineering Mechanics,” 5" Edition, McGraw-
Hill International Editions, NY.

Timoshenko, S., Woinowski, K., 1959, “Theory of Plates and Shells,” McGraw-Hill
Book Company, NY. '

188

Uncini, A., Lorenze, V., Campolucci, Piazza, F., 1999, “Complex Valued Neural
Networks with Adaptive Spline Activation Function for Digital Radio Links
Nonlinear Equalization,” IEEE Transactions on Signal Processing, vol. 47, no. 2,
pp. 505-515.

Wang, J., 1992, “Recurrent Neural Networks for Solving Systems of Complex-Valued
Linear Equations,” Electronics Letters, vol. 28, no. 18, pp. 1751-1753.

Weber, D. M., Casasent, D. P., 1998, “The Extended Piecewise Quadratic Neural
Network,” Neural Networks, vol. 11, pp. 837-850.

Werbos, P.J., 1974, “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences,” PhD Thesis, Harvard University.

Werbos, P. J. and Titus, J., 1978, “An Empirical Test of New Forecasting Methods
derived from a Thedry of Intelligence: The Prediction of Conflict in Latin
America,” IEEE Transactions on Systems, Man and Cybernetics, September.

Wexler, C., 1962, “Analytic Geometry, A Vector Approach,” Addison-Wesley
Publishing, Reading, Massachussetts.

Widrow, B., McCool, J. and Ball, M., 1975, “The Complex LMS Algorithm,” Proc. of
the IEEE, April.

Yan, X., Yamazaki, K., Liu, J., “Recognition of Machining Features and Feature
Topologies from NC Programs,” Computer-Aided Design, vol. 32, pp. 605-616.

Zurada, J.M., 1997, “Introduction to Artificial Neural Systems,” Jaico Publishing House,
New Delhi.

Appendix 1

Error Function based Update Rules

Deriving the Back-Propagation rule for Error Function based algorithms requires
incorporating the derivative of the form of the Error Function at appropriate places in the
actual derivation of the CVBP (Leung and Haykin, 1992). In the following, the update
rules are obtained in a general form for M hidden layers for a general activation function f
for the Fourth Power Error Function. The update rules for the other Error Function based

algorithms are listed at the end of the derivation.

1. Fourth Power Error Function

& = d./ -V,

The Fourth Power Error Function is defined by the equation

Ny

E(n) =) (¢,(n)e;(m)’ (ALD)

wi (n) = wr," () + wi, (n)

OE(n)

(M=1) M=, YEU) Al.2a

wr, " (n+ D) =wr," ' (n)-u 5 ri:M——l) ()
0E(n) 7

LM =1 Ml Al.2b

wz{(,’” "(n+1) = wi, (”) H 5 Z.!(/M—\) (}

Combining the above two equations
CE(n) i cE(n)

S| A D
owr't 0 owi,

(M- M-l LMD N
wru(“‘”(nﬁ-l)+zwzf/’” D(n+1) = wrM 0 () +iwi () =

which is

BE(n)
Bwr (M

. OE(n)
awi;h’/-l)

(M -1) (n+1) _W(M ”(n) u(

)

190

Evaluating the partial derivatives to open up the expression above

[RYA)

OF _OE dy, Onel, 0E oy] onet™M”
owr M "y, onet™ owrlM™ " By onet™” pwr MY
| CE, &y, onet™ OE, oy onet™”
= 2(8181) - ::\I) (AM=1) (A) —~ (Ar-1)
Oy, Onet,”’ owr, Oy, oOnet,"" owr,
with

> & (the Quadratic Error)
= f(”eti)

+ 0[(AM-1)

) R (M =1y _(M-1)
1 4§
- Zwu X

J=l

net"

*(l41)
= f(net"™")

Evaluating the partials to obtain expressions to compute the weight update formula

OF,

R -y) f" (net,)r
(M=)
owr,

=—(d -y,)f'(net,)x‘,""” -(d,

oF,
DyiMD

1

=—i(d’ —-y))f (net)x" " +i(d, =y) [(net)x

(A -1

(A =14

191
For computing the contribution from the partial derivatives:

oE, oE,

BwrMD b -6‘w (M 5 =—2d,-y)/" (net;)X*W K
Ty

Multiplying both sides of the above equation by 2¢,&”, we get

2 * aE() . a‘E(_)
“1E | B i
i

j =-22¢,6))(d, = y,) ['(net[)x "™

which implies

oF v OF
awr ”(/\I n 5Wl'!(l‘”'_l)

~(4,6)d; =y (net] 3,

The net update rule hence takes the following form

wy (1) = w0 () + 2ue 8] (A, (m) ~ y, () [(et) () (AL.3)

It can be seen that the additional factor (2¢,¢) that appears in the update is due to the

form of the Fourth Power Error Function (comparing with the Quadratic Error Function

update rule, displayed in the list below).

The update rule for the hidden layer weights

M- Al-1 M=) *(Al-1)
BE(n) OE(n) ox"™" dnet, ’+ BE(n) &’ onet;
i f~ = A - A= Ar=1 AL A1 (A1) L A=2)
owr™ ax M DnetM ™ dwry M o dne, owr,

Now since the Error Function is Fourth Power

)% OE(n) _

Y
ax(M n Zz kg/c(d)W

f(net(M) f(zw(M l) (M- 1)+9/£M—I))

5\(” T 22 kgk(d yk)f (”e[/‘/\/))W(M)
Similarly,

o))
ax,(gwn?) 223/{5/;(0’ =y [(net; M))W*(M &

!

OE(n .
e =[5 25,81 ~ 30 (et i 1 et
k

I

(= (2e,6,)(d, ~ y,)f (neti ¥ Yy D 1 (et
k

Using the above two expressions to eliminate their LHS in an above equation

S = -8 ¥ (et w1 e

LT CRESATCE A T B
Combining the above two into a complex form yields the following equation

WV (n+1) = Wi ’”(n)+p[2(2£AEA)(d =y) (et WY f (ned ™ T (AL

2. Absolute Error Function

e (14 1) = w7 () + g ===)(d (1) =, () (net) () (A13)
2 &€

17

(M—._)(n+1) VVM D(”)‘*‘,”[Z VA)/W(ne[*(W))M*HI l)]f (1’1(:’ *(/\f I))X*(‘\I-") (Alé)

V@ﬂ

3. Andrew Error Function

For the first part of the definition, the update rule is

- sin(zy/&,))(d, (n)— y,(n)f " (net”)x_j“‘""”(n) (A1.7)

gl é‘I

(AI l)(n+1) M (Al- I)(n)'*‘ﬂ(—

G RN S J_smer&?), =) (el W N (e D (A1.8)

and for the second part of the error function, the weight update is zero for the function is

defined to be constant for the absolute value of the argument greater than c.

4. Bipolar Hyperbolic Squared Error Function

(M -1)

(1+1) = Wl () + i (1) = 3, () f (et 5 () (AL9)

(4-(&e)")
Wy D=)+ s - (poRiCael)f (nef " yw U 1f (nef M (AL10)
5. Cauchy Error Function
wi ™ (n+1) = w, ' () + ,1(-—-:—5*—)(511 (1) =y, (). (el)x " (n) (AL.11)
1+ —’cg’~)

(d, —1A)f(nef"\"))1 AN £ (el [“)x"” Y (A1.12)

WD (1) =l) 4 44

I3 & 5A
0+

6. Fair Error Function

)@ ()= y,()f (nef) (m) (AL.13)

WD (14 1) = WD () e (-
&‘,.5, v 5,6':
' (I+—)
c

WD D =D 0+ Y e (e Y, 30) el 1 e (AL 14)

c

7. Geman-McClure Error Function

wit ™ (n+1) = w0 (n) + p———5)(d, (1) = y, () [(met)x M (n) (A1.15)
¢! +g,£,)

ARICEE “”(n)—wiZ o= nf (el w1 e (ALLLG)
kk

8. Huber Error Function -

For the first part of the function in which the error is computed by a quadratic formula.

the update rules are

M Dn+1) = W(M D (n)+ u(d,(n) -y, (1) [(net;)x;W'”(n) (A1.17)

W (1) = WD () 4 (30) e W L e (ALLS)

For the second part of the function where the definition involves an absolute function. the

update rules take the following form

WD (n+1) = Wi+ - S)(d, (1) = 3, () £ (net)} () (AL19)
€,

!

(M 2)(n+1) W(M—")(n)_'_/j[z \/i_:(dk _yk)fl(ne[;‘(M))w;’(.v\/—l)].f'v(nefl*(.‘\l—l))x;‘(.\l—ll (A].?O)
E&,

k

9. Hyperbolic Squared Error Function

wi T (n+1) = wit'" "(n)+y(-—:27—~(d,(n>~y,(n))f'(neri)x;"""”(n) (A1.21)
(g,6)° =)

w;M"z)(n+l)=w;,M 7)(n)+,u{2(() 1) =Y (nef MmO (e) (A1.22)
&) —

10. Log Cosh Error Function

(AI -1)

"(n+1) = wM ™ (n) + ptanh(s,£)(d, (n) = y, () [(net)x 7 (n) (A1.23)

w2 (n+1) = wh P (n) + 1) tanhé, &,)(d, ~y,)f (net w1 (ned)X (A1.24)
k

11. Logarithmic Error Function

w ™ (n+1) = w0 (n) + pu(d, (n) = y, () f" (net))x 7" () (A1.25)

WD (n 1) = w2 (n) + > (d =y,) S (et O] (et (AT.26)
k

12. Mean-Median Error Function

W(M—n)(n+1) _ M)(//\I—I)(n)+#(___}___)(d (n) =y, (nN 1" (net,)\ M) (A1.27)
i /

21+ 5%0)
2

WD (4 1) = W () S S (el e (4128
e |

13. Minkowski Error Function

W e) =)+ w62 TN, (= 3, (S et) (AL29)

- -2 4 * (g ¥ el - *(/=2
Wi (n+1) =wl" () + #{Z.E(Ekgk) 2 =Y) (e YWt (e) (A 1.30)
k

14. Quadratic Error Function

wy ' (n+1) = w0 () + w(d, (n) - 3, () [(net))M () (A1.31)
wi' ' (n+1) = WM () + 1) (d, =y) [(net; M Yw O] (et (A1.32)
k

15. Sinh Error Function

w ™ (n+1) = wi ™" (n) + pcosh(e e)(d, (n) - y,(n) [(net;)x 1 () (A1.33)

W (n+ 1) =wi" ’>(n)+y[2cosh(skq)d, =y,) (et i (e)T (A1.34)

16. Tukey Error Function

W (0 +1) = WD () + (S (L= 220N, (1) = 3 (et (AT3S)
’ c” ¢

£,&;

w2 (n+1) = w“"’(n)+p{2—3,—(1-—)d, =y, f (e i O (el TN (AT.36)
K €

197

For the other half of the Tukey Error Function, the update is simply zero (for the function

is constant in this range of the argument).

17. Welsch Error Function

wi ! D (n+1) = wy'' ”(n) + ﬂ%exp(— 5§—7>>(d, (n) = y,(n) [(net))x; " (n) (A137)
C

& ‘9/«

=) (el M f (e (A1.38)

WD (1) =ul" () + y[z—

Errata

In all pictures frarpes through out the thesis where Error Function results have been
reported, the functions have been arranged alphabetically in the following sequence:

Absolute Error, Andrew Error, Bipolar Hyperbolic Error, Cauchy Error, Fair Error

Fourth Power Error, Geman McClure Error, Huber Error, Hyperbolic Error, Logarithmic

Error, Log Cosh Error, Mean-Median Error, Minkowski E. : .
Error, Tukey Error, Welsch Error. rror, Quadratic Error, Sinh

Taple 3.4, Cqmplex XOR Problem, Page 44: The x-axis shows real part of the output
while the y-axis shows the imaginary part of the output.

Table 3.6, Complex 3-Parity Problem, Page 49: The x-axis shows real part of the
Complex 3—.P.ar1ty map while the y-axis shows the imaginary part of the very map when
the composition is according to the order displayed in expression (3 .36).

Table 3.7, Complex 3-Parity Problem, Page 51: The x-axis shows real part of the
Complex 3-Parity map while the y-axis shows the imaginary part of the very map when
the composition is according to the order displayed in expression (3.37).

Table 3.8, Norm of Complex 3-Parity Map, Page 54: The x-axis shows vector index
while the y-axis shows the norms computed as explained in the caption to the figure.

Table 3.11, z=sin(x)sin(y) Map, Page 58: The abscissae are respectively the x- and y- as
they appear in the definition of the surface. The z-axis shows a plot of the surface within
the ranges of the argument as indicated ([0, 7 /2]).

Table 3.12, z=sin(x)sin(y) Map, Page 60: The abscissae are respectively the x- and y- as
they appear in the definition of the surface. The z-axis shows a plot of the surface within
the ranges of the argument as indicated ([0,27]).

Fig. 3.3, Complex Map w=sin(z), Page 64: The x-axis and the y-axis respectively are real
and imaginary parts of the function sin(z).

Table 3.13, Approximating sin(z), Page 65: The x and y axes respectively are the real and
imaginary parts successively with increasing number of terms in a Taylor Series

expansion of sin(z).

Fig. 3.4, Page 67: (a) The x and y axes respectively are the real and imaginary parts of the
circle function of equation (3.47) while (b) is the image of the same map shown on a

different complex plane.

Table 3.15, Mapping w = sin(z,)sin(z,), Page 67: The pictures here are a magnification
of the one in Fig. 3.4(b).

Table 3.16, Classification and Two-Spirals, Page 72: The output for the Real BPA based

classification was chosen to be the coordinates (0.5,0), (-0.5,0). The test data points
cluster about these target points.

Fig. fI.l, 4.2 Nitta Activation, Page 84: The abscissae and ordinates are the real and
imaginary parts and of the derivatives of the Nitta Activation, equation (4.8).

Fig. 4.3(a), Singular points, Page 87: The figure shows the complex plane of z as defined
in equation (4.11). The x- and y- axes are the real and imaginary of the z aforementioned.

Fig. 4.4, Georgiou Activation, Page 88: The figure shows the surfaces of the real and
imaginary parts of the Georgiou Activation function as defined in equation (4.17). The x-
and y- axes are the real and imaginary of the z aforementioned.

Fig. 4.5, New Activation, Page 90: The figure shows the surfaces of the real and
imaginary parts of the New Activation function as defined in equation (4.20). The x- and
y- axes are the real and imaginary of the z in the definition.

Fig. 5.1, Bilinear Transformation, Page 96: The complex plane shows the real and
imaginary parts of the definition in equation (5.1) for specific values of a, b, ¢ and d.

Table 5.1, Bilinear Transformation, Page 97: The frames show real and imaginary parts
on the x and y-axes respectively, of the Bilinear Transformation defined in equation (5.1).

Table 5.2, Bilinear Transformation, Page 99: The frames show real and imaginary parts
on the x and y-axes respectively, of the Bilinear Transformation defined in equation (5.1).

Fig. 5.2, Polynomial Map, Page 102: The x- and y- are as in the defining equations (5.4)
and (5.5).

Table 5.3, Parabola, Page 103: The x- and y- are as in the defining equation (5.4).
Table 5.4, Parabola, Page 105: The x- and y- are as in the defining equation (5.4).
Table 5.5, Fourth Power, Page 107: The x- and y- are as in the defining equation (5.5).
Table 5.6, Fourth Power, Page 110: The x- and y- are as in the defining equation (5.5).
Table 5.7, Fourth Power, Page 112: The x- and y- are as in the defining equation (5.5).
Table 5.8, Fourth Power, Page 112: The x- and y- are as in the defining equation (5.5).

Fig. 5.3, Similarity Transformation, Page 117 A general complex plane shown with two
concentric circles

Table 5.9, Similarity Transformation, Page 117: The axes show real and imaginary parts
respectively of a Similarity Transformation.

Table 5.10, Similarity Transformation, Page 119:

. The axes show real and imaginary
parts respectively of a Similarity Transformation.

Table 5.11, Exponential T; ransformation, Page 122: The axes show real and imaginary
parts respectively of the Ex

ponential Transformation defined according to equations
(5.72) and (5.7b).

Table 5.12, Exponential Transformation, Page 124: The axes show real and imaginary

parts respectively of the Exponential Transformation defined according to equations
(5.7a) and (5.7b).

Table 5.13, Exponential Transformation, Page 127: The axes show real and imaginary
parts respectively of the E:

xponential Transformation defined according to equations
(5.72) and (5.7b).

Table 3.14, Exponential Transformation, Page 129: The axes show real and imaginary

parts respectively of the Exponential Transformation defined according to equations
(5.72) and (5.7b).

Fig. 5.4, Exponential Function, Page 132: The axes are according to the defining
equation (5.8).

Table 3.15, Exponential Function, Page 132: The axes are according to the defining
equation (5.8).

Table 5.16, Exponential Function, Page 134: The axes are according to the defining
equation (5.8).

Table 3.17, w =sin(z,)sin(z,), Page 137: The axes are the real and imaginary parts of
the function sin(z,)sin(z,) .

Table 5.18, w =sin(z,)sin(z,), Page 139: The axes are the real and imaginary parts of
the function sin(z,)sin(z,) .

Table 6.2, Algebraic and Transcendental Surfaces, Page 149: The x- and y- are according
to the defining equations that appear at the top in each frame.

Fig. 6.1, Points on xy-Plane, Page 157: The xy-Plane shown with points marked.

Figs. 6.2-6.5, Signatures, Pages 158, 163, 164, 165: The abscissa is vector.index for each
small frame in these figures. The ordinate is the value under the function marked as
TrS** (training surface) or Tst** (for test surface). The two asterisks represent the serial
number of the function in question.

Fig. 6.6, Points Order Determinalion, Page 165: The xy-Plane shown with points
marked.
Fig. 6.7, Planes Quadratic Cubic, Page 169: The x-

and y- are according to the defining
equations shown alongside in the very figure.

Fig. 6.8, Signatures, Page 170: The abscissa is vector index, ordinate is the value of the
corresponding planar, quadratic or cubic surface defined in Fig. 6.7.

